-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
88 lines (71 loc) · 2.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import logging
from pathlib import Path
from typing import Dict, Optional, Union
import fire
import torch
from ruamel import yaml
from torch import nn
from torch.utils.data import DataLoader
from not_ae.trainer import Trainer
from not_ae.utils.general import REGISTRY, random_seed
FORMAT = "%(asctime)s %(message)s"
logging.basicConfig(format=FORMAT, level=logging.INFO)
def train(config_path: Union[Path, str], seed: Optional[int] = None):
config: Dict = yaml.safe_load(Path(config_path).open("r"))
if seed is not None:
random_seed(seed)
print(yaml.safe_dump(config))
Path(config["save_dir"]).mkdir(exist_ok=True, parents=True)
train_dataset = REGISTRY.dataset.create(
config["dataset"]["name"], **config["dataset"]["params"], split="train"
)
val_dataset = REGISTRY.dataset.create(
config["dataset"]["name"], **config["dataset"]["params"], split="val"
)
train_dataloader = DataLoader(
train_dataset, batch_size=config["batch_size"], shuffle=True
)
val_dataloader = DataLoader(
val_dataset, batch_size=config["batch_size"], shuffle=False
)
ae = REGISTRY.model.create(
config["model"]["ae"]["name"], **config["model"]["ae"]["params"]
)
ae = ae.to(config["device"])
potential = REGISTRY.model.create(
config["model"]["potential"]["name"], **config["model"]["potential"]["params"]
)
potential = potential.to(config["device"])
if config["data_parallel"] and config["device"] != "cpu":
ae = nn.DataParallel(ae)
potential = nn.DataParallel(potential)
ae.inverse_transform = train_dataset.inverse_transform
ae_opt = torch.optim.Adam(ae.parameters(), **config["model"]["ae"]["opt_params"])
potential_opt = torch.optim.Adam(
potential.parameters(), **config["model"]["ae"]["opt_params"]
)
cost = REGISTRY.model.create(config["cost"]["name"]).to(config["device"])
callbacks = []
for callback in config["callbacks"]:
if "ae" in callback["params"]:
callback["params"]["ae"] = ae
if "potential" in callback["params"]:
callback["params"]["potential"] = potential
if "test_dataset" in callback["params"]:
callback["params"]["test_dataset"] = val_dataset
callback = REGISTRY.model.create(callback["name"], **callback["params"])
callbacks.append(callback)
trainer = Trainer(
ae,
potential,
ae_opt,
potential_opt,
cost,
train_dataloader,
val_dataloader,
callbacks,
**config["train_params"],
)
trainer.train(config["n_epoch"])
if __name__ == "__main__":
fire.Fire()