Create environment and set dependencies:
conda create -n not_ae python=3.8
curl -sSL https://install.python-poetry.org | python3 -
poetry config virtualenvs.create false
conda activate not_ae
poetry install
Make bash scripts runable
chmod +x -R scripts/*.sh
python tools/compute_fid_stats.py CelebADataset stats/celeba_fid_stats_{val, test}.npz --split {val, test}
python tools/compute_fid_stats.py ArtBench10 stats/artbench_fid_stats_{val, test}.npz --split {val, test}
train baseline:
python train.py train configs/train_{celeba / artbench}_{l1 / l2}_ae.yml
train NOT-AE:
python train.py train configs/train_{celeba / artbench}_{l1 / l2 / perceptual}_cost.yml
Method | Cost | test LPIPS ( |
test FID ( |
---|---|---|---|
AE | L2 | ||
NOT-AE | L2 |
Vanilla Autoencoder with MSE loss:
NOT-Autoencoder with L2 cost:
- fix artbench (add train / val / test split)
- extend to VAE ?
@article{korotin2022neural,
title={Neural optimal transport},
author={Korotin, Alexander and Selikhanovych, Daniil and Burnaev, Evgeny},
journal={arXiv preprint arXiv:2201.12220},
year={2022}
}