-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathhyperspectral_resnet.py
354 lines (300 loc) · 12.9 KB
/
hyperspectral_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import tensorflow as tf
from .resnet_config import Config
# Adapted from https://github.com/ry/tensorflow-resnet/blob/master/resnet.py
BN_DECAY = 0.99
CONV_WEIGHT_STDDEV = 0.1
FC_WEIGHT_STDDEV = 0.01
RESNET_VARIABLES = 'resnet_variables'
IMAGENET_MEAN_BGR = [103.062623801, 115.902882574, 123.151630838, ]
DEFAULT_DTYPE = tf.float32
activation = tf.nn.relu
def update_feature_dict(x, c):
feature_dict = c['feature_dict']
if feature_dict is None:
return
for k in sorted(feature_dict.keys()):
if not isinstance(feature_dict[k], bool):
continue
if feature_dict[k]:
feature_dict[k] = tf.reduce_mean(x, axis=[1, 2], name=f'feature_dict_avg_pool_{k}')
return
else:
feature_dict.pop(k)
return
def inference(x, is_training,
num_classes=1000,
num_blocks=[3, 4, 6, 3], # defaults to 50-layer network
use_bias=False, # defaults to using batch norm
bottleneck=True,
use_dilated_conv_in_first_layer=False,
blocks_to_save=None,
conv_reg=0.001,
fc_reg=0.001):
'''Implements Resnet v2 (preactivation).
Args
- x: tf.Tensor, shape [batch_size, H, W, C], type float32
- is_training: bool
- num_classes: int, number of output classes for final fully-connected layer,
set to None if no fully-connected layer is desired
- num_blocks: list of 4 integers, number of blocks in each of the 4 "groups" (or "scales")
- use_bias: bool, if True performs conv(x)+bias, if False performs batch_norm(conv(x))
- bottleneck: bool, if True uses bottleneck layer
- use_dilated_conv_in_first_layer: bool
- blocks_to_save: dict of {int: None}, keys are block numbers from which to save features
NOTE: the keys are BLOCK numbers, not LAYER numbers
- conv_reg: float, L2 weight regularization penalty for conv layers
- fc_reg: float, L2 weight regularization penalty for fully-connected layer
Returns:
- x: if num_classes is None, x is equal to features_layer
otherwise, x is a tf.Tensor with shape [batch_size, num_classes]
- features_layer: tf.Tensor with shape [batch_size, num_final_filters] where num_final_filters
is the number of filters in the last layer of the resnet before the average-pooling
'''
with tf.variable_scope('resnet'):
c = Config()
c['bottleneck'] = bottleneck
c['is_training'] = is_training
c['ksize'] = 3
c['stride'] = 1
c['use_bias'] = use_bias
c['fc_units_out'] = num_classes
c['num_blocks'] = num_blocks
c['conv_reg'] = conv_reg
c['fc_reg'] = fc_reg
c['stack_stride'] = 2 # default stride for the 1st conv of the 1st block in each stack
c['is_first_stack'] = False
# Make blocks_to_save into a dict of {block_number: bool}
# that indicates whether or not each block's features are to be saved
if blocks_to_save is not None:
valid_keys = range(1, sum(num_blocks) + 1)
for k in blocks_to_save.keys():
if k not in valid_keys:
raise Exception('Entered invalid block for feature extraction.')
for i in valid_keys:
blocks_to_save[i] = (i in blocks_to_save)
c['feature_dict'] = blocks_to_save
with tf.variable_scope('scale1'):
c['conv_filters_out'] = 64
c['ksize'] = 7
c['stride'] = 2
if use_dilated_conv_in_first_layer:
# Note: Fixed stride of 1 means double w/h for the rest of the network
x = first_layer_dilated_conv(x, c)
else:
x = conv(x, c)
x = bn_activation(x, c)
x = tf.identity(x, name='scale1_img')
with tf.variable_scope('scale2'):
x = _max_pool(x, ksize=3, stride=2)
c['num_blocks'] = num_blocks[0]
c['is_first_stack'] = True
c['stack_stride'] = 1 # max_pool already reduced input dims, so 1st conv layer here will use stride=1
c['block_filters_internal'] = 64
x = stack(x, c)
x = tf.identity(x, name='scale2_img')
with tf.variable_scope('scale3'):
c['num_blocks'] = num_blocks[1]
c['block_filters_internal'] = 128
assert c['is_first_stack'] is False
assert c['stack_stride'] == 2
x = stack(x, c)
x = tf.identity(x, name='scale3_img')
with tf.variable_scope('scale4'):
c['num_blocks'] = num_blocks[2]
c['block_filters_internal'] = 256
x = stack(x, c)
x = tf.identity(x, name='scale4_img')
with tf.variable_scope('scale5'):
c['num_blocks'] = num_blocks[3]
c['block_filters_internal'] = 512
x = stack(x, c)
x = tf.identity(x, name='scale5_img')
# post-net
x = tf.reduce_mean(x, axis=[1, 2], name='avg_pool') # avg pool across image width and height
features_layer = x
if num_classes is not None:
with tf.variable_scope('fc'):
x = fc(x, c)
return x, features_layer
def stack(x, c):
block_fn = block_preact
# first block in the stack usually performs the downsampling via stride-2 convolution
with tf.variable_scope('block1'):
c['block_stride'] = c['stack_stride']
c['is_first_block_of_first_stack'] = c['is_first_stack']
x = block_fn(x, c)
for n in range(2, c['num_blocks'] + 1):
with tf.variable_scope(f'block{n}'):
c['block_stride'] = 1
c['is_first_block_of_first_stack'] = False
x = block_fn(x, c)
return x
def block_preact(x, c):
filters_in = x.get_shape()[-1]
# Note: filters_out isn't how many filters are outputed.
# That is the case when bottleneck=False but when bottleneck=True,
# filters_internal*4 filters are outputted. filters_internal is how many filters
# the 3x3 convs output internally.
m = 4 if c['bottleneck'] else 1
filters_out = m * c['block_filters_internal']
c['conv_filters_out'] = c['block_filters_internal']
is_changing_dims = (filters_out != filters_in) or (c['block_stride'] != 1)
# apply preactivation as needed
if is_changing_dims:
# TensorPack claims that input into 1st stack is already "activated"
if not c['is_first_block_of_first_stack']:
# common BN, ReLU
with tf.variable_scope('preact'):
x = bn_activation(x, c)
# shortcut needs conv to match dimensions
with tf.variable_scope('shortcut'):
c['ksize'] = 1
c['stride'] = c['block_stride']
c['conv_filters_out'] = filters_out
shortcut = conv(x, c)
else:
shortcut = x
if not c['is_first_block_of_first_stack']:
# apply BN + ReLU to non-shortcut branch only
with tf.variable_scope('preact'):
x = bn_activation(x, c)
if c['bottleneck']:
with tf.variable_scope('a'):
c['ksize'] = 1
x = conv(x, c)
x = bn_activation(x, c)
with tf.variable_scope('b'):
# TensorPack performs the stride-2 downsampling in the 3x3 convolution, even though
# Kaiming's own implementation suggests that the downsampling should go in the 1x1
# convolution of scope('a'). We match TensorPack's implementation here so that we
# can use their pre-trained weights.
c['stride'] = c['block_stride']
x = conv(x, c)
x = bn_activation(x, c)
with tf.variable_scope('c'):
c['conv_filters_out'] = filters_out
c['ksize'] = 1
assert c['stride'] == 1
x = conv(x, c)
else:
with tf.variable_scope('A'):
c['stride'] = c['block_stride']
assert c['ksize'] == 3
x = conv(x, c)
x = bn_activation(x, c)
with tf.variable_scope('B'):
c['conv_filters_out'] = filters_out
assert c['ksize'] == 3
assert c['stride'] == 1
x = conv(x, c)
x = x + shortcut
update_feature_dict(x, c)
return x
def bn(x, c):
if c['use_bias']:
x_shape = x.get_shape()
params_shape = x_shape[-1:]
bias = _get_variable('bias', params_shape,
initializer=tf.zeros_initializer())
return x + bias
else:
return tf.layers.batch_normalization(x, momentum=BN_DECAY, training=c['is_training'])
def fc(x, c):
num_units_in = x.get_shape()[1]
num_units_out = c['fc_units_out']
weights_initializer = tf.truncated_normal_initializer(
stddev=FC_WEIGHT_STDDEV)
weights = _get_variable('weights',
shape=[num_units_in, num_units_out],
initializer=weights_initializer,
weight_decay=c['fc_reg'])
biases = _get_variable('biases',
shape=[num_units_out],
initializer=tf.zeros_initializer())
x = tf.nn.xw_plus_b(x, weights, biases)
return x
def _get_variable(name,
shape,
initializer,
weight_decay=0.0,
dtype=DEFAULT_DTYPE,
trainable=True):
'''Wrapper around tf.get_variable to do weight decay and add to resnet collection'''
if weight_decay > 0:
regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
else:
regularizer = None
collections = [tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.TRAINABLE_VARIABLES, RESNET_VARIABLES]
return tf.get_variable(name,
shape=shape,
initializer=initializer,
dtype=dtype,
regularizer=regularizer,
collections=collections,
trainable=trainable)
def conv(x, c):
ksize = c['ksize']
stride = c['stride']
filters_out = c['conv_filters_out']
filters_in = x.get_shape()[-1]
shape = [ksize, ksize, filters_in, filters_out]
initializer = tf.variance_scaling_initializer(scale=2.0, mode='fan_out', distribution='normal')
weights = _get_variable('weights',
shape=shape,
initializer=initializer,
weight_decay=c['conv_reg'])
return tf.nn.conv2d(x, weights, [1, stride, stride, 1], padding='SAME')
def first_layer_dilated_conv(x, c):
ksize = c['ksize']
filters_out = c['conv_filters_out']
filters_in = x.get_shape()[-1]
if filters_in != 9:
raise Exception('Attempting to use dilated convolution on image that does not have 9 bands. Is rgb_only True?')
shape = [ksize, ksize, filters_in, filters_out]
initializer = tf.truncated_normal_initializer(stddev=CONV_WEIGHT_STDDEV)
weights = _get_variable('weights',
shape=shape,
initializer=initializer,
weight_decay=c['conv_reg'])
# sum several convolutions across layers, dilate them so that each conv is looking at the image at its proper resolution.
# i.e. if each pixel is 15 meters, and an image has a resolution of 30 meters, its convolution
# should be dilated with d=2 so that it looks at its image correctly
# assumes the bands are in the following order
"""
In order and by index, the bands are:
0: Blue (Band 1)
1: Green (Band 2)
2: Red (Band 3)
3: Near Infared (NIR) (Band 4)
4: Short-wave Infrared 1 (SWIR1) (Band 5)
5: Short-wave Infrared 2 (SWIR2) (Band 7)
6: Panchromatic (Band 8)
7: Thermal 1 (Band 6 VCID 1)
8: Thermal 2 (Band 6 VCID 2)
"""
_15_meter = [0,1,2,6]
_30_meter = [3,4,5]
_60_meter = [7,8]
split_weights = tf.split(axis=2, num_or_size_splits=9, value=weights)
split_x = tf.split(axis=3, num_or_size_splits=9, value=x)
def do_dilated_cov(indicies, rate, name):
return tf.nn.atrous_conv2d(
value=tf.concat(axis=3, values=[band for i, band in enumerate(split_x) if i in indicies]),
filters=tf.concat(axis=2, values=[_filter for i, _filter in enumerate(split_weights) if i in indicies]),
rate=rate,
padding='SAME',
name=name)
dilated_conv_15m = do_dilated_cov(_15_meter, 1, '15_meter_dilated_conv')
dilated_conv_30m = do_dilated_cov(_30_meter, 2, '30_meter_dilated_conv')
dilated_conv_60m = do_dilated_cov(_60_meter, 4, '60_meter_dilated_conv')
return dilated_conv_15m + dilated_conv_30m + dilated_conv_60m
def _max_pool(x, ksize=3, stride=2):
x = tf.nn.max_pool(x,
ksize=[1, ksize, ksize, 1],
strides=[1, stride, stride, 1],
padding='SAME')
return x
def bn_activation(x, c):
x = bn(x, c)
x = activation(x)
return x