-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcon_rae2822_air_0.cfg
312 lines (298 loc) · 10.8 KB
/
con_rae2822_air_0.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: Transonic Turbulent flow over a RAE2822 Airfoil %
% Author: Susmit Joshi %
% Institution: Virginia Tech %
% Date: 12/31/2024 %
% File Version 7.1.1/8.0 %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY,
% POISSON_EQUATION)
SOLVER= RANS
%
% Kind of turbulent model (NONE, SA, SA_NEG, SST)
KIND_TURB_MODEL = SA
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO
%
SYSTEM_MEASUREMENTS= SI
%
AXISYMMETRIC= NO
%------------------------------------------------------------------------------%
% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.8
%
% Angle of attack (degrees)
AOA= 0.0
%
% Side-slip angle (degrees)
SIDESLIP_ANGLE= 0.0
%
% Init option to choose between Reynolds (default) or thermodynamics quantities
% for initializing the solution (REYNOLDS, TD_CONDITIONS)
INIT_OPTION= REYNOLDS
%
% Free-stream option to choose between density and temperature (default) for
% initializing the solution (TEMPERATURE_FS, DENSITY_FS)
FREESTREAM_OPTION= TEMPERATURE_FS
%
% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows)
FREESTREAM_PRESSURE= 101325.0
%
% Free-stream temperature (288.15 K by default, 254 for RAM C-II)
FREESTREAM_TEMPERATURE= 288.15
%
% Reynolds number (non-dimensional, based on the free-stream values)
REYNOLDS_NUMBER= 1.8464E+07
%
% Reynolds length (1 m, 1 inch by default)
REYNOLDS_LENGTH= 1.0
%
%------------------------------------------------------------------------------%
% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation (m or in)
REF_ORIGIN_MOMENT_X = 0.25
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for moment non-dimensional coefficients (m or in)
REF_LENGTH= 1
%
% Reference area for non-dimensional force coefficients (0 implies automatic
% calculation) (m^2 or in^2)
% REF_AREA= 2.0321
REF_AREA= 0.2
%
% Aircraft semi-span (0 implies automatic calculation) (m or in)
SEMI_SPAN= 0.2
%------------------------------------------------------------------------------%
% ---- NONEQUILIBRIUM GAS, IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS -------%
%
% Fluid model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS,
% CONSTANT_DENSITY, INC_IDEAL_GAS, INC_IDEAL_GAS_POLY, MUTATIONPP, SU2_NONEQ)
FLUID_MODEL= STANDARD_AIR
%------------------------------------------------------------------------------%
% --------------------------- VISCOSITY MODEL ---------------------------------%
%
% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY, POLYNOMIAL_VISCOSITY).
VISCOSITY_MODEL= SUTHERLAND
%
% Molecular Viscosity that would be constant (1.716E-5 by default)
MU_CONSTANT= 1.716E-5
%
% Sutherland Viscosity Ref (1.716E-5 default value for AIR SI)
MU_REF= 1.716E-5
%
% Sutherland Temperature Ref (273.15 K default value for AIR SI)
MU_T_REF= 273.15
%
% Sutherland constant (110.4 default value for AIR SI)
SUTHERLAND_CONSTANT= 110.4
%------------------------------------------------------------------------------%
% --------------------------- THERMAL CONDUCTIVITY MODEL ----------------------%
%
% Laminar Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL,
% POLYNOMIAL_CONDUCTIVITY).
CONDUCTIVITY_MODEL= CONSTANT_PRANDTL
%
% Laminar Prandtl number (0.72 (air), only for CONSTANT_PRANDTL)
PRANDTL_LAM= 0.72
%
% Turbulent Prandtl number (0.9 (air), only for CONSTANT_PRANDTL)
PRANDTL_TURB= 0.9
%------------------------------------------------------------------------------%
%--------------------- WALL FUNCTION DEFINITION ------------------------------%
%
% The von Karman constant, constant below only affects the standard wall function model
WALLMODEL_KAPPA= 0.41
%
% The wall function model constant B
WALLMODEL_B= 5.5
%
% The y+ value below which the wall function is switched off and we resolve the wall
WALLMODEL_MINYPLUS= 5.0
%
% [Expert] Max Newton iterations used for the standard wall function
% WALLMODEL_MAXITER= 200
%
% [Expert] Relaxation factor for the Newton iterations of the standard wall function
% WALLMODEL_RELFAC= 0.5
%------------------------------------------------------------------------------%
% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Navier-Stokes wall boundary marker(s) (NONE = no marker)
MARKER_HEATFLUX= (AIRFOIL, 0.0)
%
MARKER_FAR= (FARFIELD)
%
MARKER_SYM= (SYMMETRY)
%
% Inlet boundary marker(s)
% Format: ( Inlet marker, total temp, total press, flow_direction_x, flow_direction_y, flow_direction_z, ...)
MARKER_INLET= (INLET, 323.3516, 1.6391E+05, 1.0, 0.0, 0.0)
%
% Outlet boundary marker(s)
% Format: ( Outlet Marker, back pressure, ...)
MARKER_OUTLET= (OUTLET, 101325)
%
% Marker(s) of the surface to be plotted or designed
MARKER_PLOTTING= (AIRFOIL)
%
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
MARKER_MONITORING= (AIRFOIL)
%------------------------------------------------------------------------------%
% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, LEAST_SQUARES,
% WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 100.0
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= YES
%
% Parameters of the adaptive CFL number (factor-down, factor-up, CFL min value,
% CFL max value, acceptable linear solver convergence)
% Local CFL increases by factor-up until max if the solution rate of change is not limited,
% and acceptable linear convergence is achieved. It is reduced if rate is limited, or if there
% is not enough linear convergence, or if the nonlinear residuals are stagnant and oscillatory.
% It is reset back to min when linear solvers diverge, or if nonlinear residuals increase too much.
CFL_ADAPT_PARAM= ( 0.1, 2.0, 1, 1e4 )
%
% Number of total iterations
ITER= 100000
%
% Linear solver for the implicit formulation (BCGSTAB, FGMRES)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS)
LINEAR_SOLVER_PREC= ILU
%
% Min error of the linear solver for the implicit formulation
LINEAR_SOLVER_ERROR= 1E-10
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 10
%
% Runge-Kutta alpha coefficients
RK_ALPHA_COEFF= (0.66667, 0.66667, 1.0)
%------------------------------------------------------------------------%
% ------------------ FLOW NUMERICAL METHOD DEFINITION -------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= JST
%
% 2nd and 4th order artificial dissipation coefficients for JST method (0.5, 0.02 by default)
JST_SENSOR_COEFF= (0.5, 0.02)
%
MUSCL_FLOW= NO
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% Coefficient for the Venkat's limiter (upwind scheme). A larger values decrease
% the extent of limiting, values approaching zero cause
% lower-order approximation to the solution (0.05 by default)
VENKAT_LIMITER_COEFF= 0.05
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT
%
% Reference coefficient (sensitivity) for detecting sharp edges
REF_SHARP_EDGES= 3.0
%------------------------------------------------------------------------------%
% ------------------ TURBULENT NUMERICAL METHOD DEFINITION --------------------%
%
% Convective numerical method
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
%
MUSCL_TURB= NO
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
SLOPE_LIMITER_TURB= VENKATAKRISHNAN
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_TURB= EULER_IMPLICIT
%------------------------------------------------------------------------------%
% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Convergence criteria (CAUCHY, RESIDUAL)
%
% CONV_CRITERIA= CAUCHY
%
CONV_FIELD = RMS_DENSITY
%
% Min value of the residual (log10 of the residual)
CONV_RESIDUAL_MINVAL= -14
%
% Start convergence criteria at iteration number
CONV_STARTITER= 10
%
% Number of elements to apply the criteria
CONV_CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CONV_CAUCHY_EPS= 1E-6
%------------------------------------------------------------------------------%
% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Volume output fields/groups (use 'SU2_CFD -d <config_file>' to view list of available fields)
VOLUME_OUTPUT= (COORDINATES, SOLUTION, PRIMITIVE, RESIDUAL, TIMESTEP, MESH_QUALITY)
%
% Screen output fields (use 'SU2_CFD -d <config_file>' to view list of available fields)
SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_MOMENTUM-X, RMS_MOMENTUM-Y, RMS_ENERGY, WALL_TIME)
%
% History output groups (use 'SU2_CFD -d <config_file>' to view list of available fields)
HISTORY_OUTPUT= (ITER, RMS_RES, AERO_COEFF)
%
% Mesh input file
MESH_FILENAME= rae2822-127k.su2
%
% Mesh input file format (SU2, CGNS)
MESH_FORMAT= SU2
%
% Restart flow input file
SOLUTION_FILENAME= sol_rae2822_air_0.csv
%
% Output file format (CSV, TECPLOT)
TABULAR_FORMAT= TECPLOT
%
% Output file convergence history (w/o extension)
CONV_FILENAME= hist_rae2822_air_0
%
% Output file restart flow
RESTART_FILENAME= rest_rae2822_air_0.csv
%
% Read binary restart files (looks for .dat restart files) (YES, NO)
READ_BINARY_RESTART= NO
%
% Output file flow (w/o extension) variables
VOLUME_FILENAME= vol_rae2822_air_0
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FILENAME= sur_rae2822_air_0
%
OUTPUT_WRT_FREQ= 100000
%
% Files to output
% Possible formats : (TECPLOT, SURFACE_TECPLOT,
% CSV, SURFACE_CSV, PARAVIEW, SURFACE_PARAVIEW,
% MESH, RESTART_ASCII, CGNS, STL)
% default : (RESTART, PARAVIEW, SURFACE_PARAVIEW)
OUTPUT_FILES= (RESTART_ASCII, CSV, SURFACE_CSV)
%------------------------------------------------------------------------------%