-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstereo_reconstruction.py
147 lines (136 loc) · 5.93 KB
/
stereo_reconstruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python3
import matplotlib.pyplot as plt
import numpy as np
import cv2 as cv
from mpl_toolkits.mplot3d import Axes3D
import time
import struct
import pandas as pd
import yaml
from scipy import ndimage, misc
# https://vision.middlebury.edu/stereo/data/scenes2014/ --datasets
# https://zetcode.com/python/yaml/
"""
SCENE-{perfect,imperfect}/ -- each scene comes with perfect and imperfect calibration (see paper)
ambient/ -- directory of all input views under ambient lighting
L{1,2,...}/ -- different lighting conditions
im0e{0,1,2,...}.png -- left view under different exposures
im1e{0,1,2,...}.png -- right view under different exposures
calib.txt -- calibration information
im{0,1}.png -- default left and right view
im1E.png -- default right view under different exposure
im1L.png -- default right view with different lighting
disp{0,1}.pfm -- left and right GT disparities
disp{0,1}-n.png -- left and right GT number of samples (* perfect only)
disp{0,1}-sd.pfm -- left and right GT sample standard deviations (* perfect only)
disp{0,1}y.pfm -- left and right GT y-disparities (* imperfect only)
"""
def write_pointcloud(filename,xyz_points,rgb_points=None):
""" creates a .pkl file of the point clouds generated
"""
assert xyz_points.shape[1] == 3,'Input XYZ points should be Nx3 float array'
if rgb_points is None:
rgb_points = np.ones(xyz_points.shape).astype(np.uint8)*255
assert xyz_points.shape == rgb_points.shape,'Input RGB colors should be Nx3 float array and have same size as input XYZ points'
#rgb_points = np.ones(xyz_points.shape).astype(np.uint8)*255
# Write header of .ply file
print("opening file")
fid = open(filename,'wb')
fid.write(bytes('ply\n', 'utf-8'))
fid.write(bytes('format binary_little_endian 1.0\n', 'utf-8'))
fid.write(bytes('element vertex %d\n'%xyz_points.shape[0], 'utf-8'))
fid.write(bytes('property float x\n', 'utf-8'))
fid.write(bytes('property float y\n', 'utf-8'))
fid.write(bytes('property float z\n', 'utf-8'))
fid.write(bytes('property uchar red\n', 'utf-8'))
fid.write(bytes('property uchar green\n', 'utf-8'))
fid.write(bytes('property uchar blue\n', 'utf-8'))
fid.write(bytes('end_header\n', 'utf-8'))
# Write 3D points to .ply file
for i in range(xyz_points.shape[0]):
if(i%5000 == 0):
print(i)
fid.write(bytearray(struct.pack("fffccc",xyz_points[i,0],xyz_points[i,1],xyz_points[i,2],
rgb_points[i,2].tobytes(),rgb_points[i,1].tobytes(),
rgb_points[i,1].tobytes())))
fid.close()
def config_info(path):
file1 = open(path, 'r')
Lines = file1.readlines()
Dic = {}
for l in Lines:
a = l.split("=")
if(a[1][-1]== "\n"):
try:
Dic[a[0]] = int(a[1][:-1])
except:
Dic[a[0]] = a[1][:-1]
else:
try:
Dic[a[0]] = int(a[1])
except:
Dic[a[0]] = a[1]
Dic["cam0"] = Dic["cam0"].split(" ")
Dic["cam0"][0] = Dic["cam0"][0][1:]
Dic["cam0"][2] = Dic["cam0"][2][:-1]
Dic["cam0"][5] = Dic["cam0"][5][:-1]
Dic["cam0"][-1] = Dic["cam0"][-1][:-1]
Dic["cam1"] = Dic["cam1"].split(" ")
Dic["cam1"][0] = Dic["cam1"][0][1:]
Dic["cam1"][2] = Dic["cam1"][2][:-1]
Dic["cam1"][5] = Dic["cam1"][5][:-1]
Dic["cam1"][-1] = Dic["cam1"][-1][:-1]
for i in range(len(Dic["cam0"])):
Dic["cam0"][i] = float(Dic["cam0"][i])
Dic["cam1"][i] = float(Dic["cam1"][i])
Dic["cam0"] = np.array(Dic["cam0"]).reshape(3,3)
Dic["cam1"] = np.array(Dic["cam1"]).reshape(3,3)
max_disparity = Dic["vmax"]
min_disparity = Dic["vmin"]
num_disparities = max_disparity - min_disparity
window_size = 5
k = Dic["cam0"]
distortion = np.zeros((5,1)).astype(np.float32)
T = np.zeros((3,1))
T[0,0] = Dic["baseline"]
R1,R2,P1,P2,Q,_,_ = cv.stereoRectify(k,distortion,k,distortion,(Dic["height"],Dic["width"]),np.identity(3),T)
return Dic,k,Q,max_disparity,min_disparity,num_disparities,window_size
def find_disparity(image1,image2,path):
Dic,k,Q,max_disparity,min_disparity,num_disparities,window_size = config_info(path)
stereo = cv.StereoSGBM_create(minDisparity = min_disparity, numDisparities = num_disparities,preFilterCap = 1, blockSize = 5, uniquenessRatio = 2, speckleWindowSize = 50, speckleRange = 2, disp12MaxDiff = 1, P1 = 8*3*window_size**2, P2 = 32*3*window_size**2,mode = 4)
imgL = cv.imread(image1,0)
print(imgL.shape)
imgR = cv.imread(image2,0)
print(imgR.shape)
disparity = stereo.compute(imgL,imgR).astype(np.float32)
disparity = ndimage.median_filter(disparity, size=21)
#disparity = cv.bilateralFilter(disparity,9,75,75)
plt.imshow(disparity,"jet")
#plt.pause(0.1)
plt.show()
#cv.imwrite("disparity.jpg",disparity)
return disparity,Q
def disparity_to_pointcloud(disparity,Q,image1):
color = cv.imread(image1)
print(color.shape)
point_cloud = cv.reprojectImageTo3D(disparity,Q)
mask = disparity > disparity.min()
xp=point_cloud[:,:,0]
yp=point_cloud[:,:,1]
zp=point_cloud[:,:,2]
color = color[mask]
color = color.reshape(-1,3)
xp = xp[np.where(mask== True)[0],np.where(mask== True)[1]]
yp = yp[np.where(mask== True)[0],np.where(mask== True)[1]]
zp = zp[np.where(mask== True)[0],np.where(mask== True)[1]]
xp=xp.flatten().reshape(-1,1)
yp=yp.flatten().reshape(-1,1)
zp=zp.flatten().reshape(-1,1)
point3d = np.hstack((xp,yp,zp))
return point3d,color
if __name__ == "__main__":
with open('path.yaml') as f:
data = yaml.load(f, Loader=yaml.FullLoader)
disparity,Q = find_disparity(data["image_1_path"],data["image_2_path"],data["calibration_info_path"])
point_cloud,color = disparity_to_pointcloud(disparity,Q,data["image_1_path"])
write_pointcloud(data["output_path"] +"\\output.ply",point_cloud,color)