diff --git a/docs/tools/vdb_table/data/activeloop.json b/docs/tools/vdb_table/data/activeloop.json index 6a3a884a..952d7fe7 100644 --- a/docs/tools/vdb_table/data/activeloop.json +++ b/docs/tools/vdb_table/data/activeloop.json @@ -33,9 +33,9 @@ "comment": "" }, "hybrid_search": { - "support": "", - "source_url": "https://docs.activeloop.ai/performance-features/querying-datasets/query-syntax", - "comment": "While you can run embedding search + contains(text, 'keywoard') or multiple those (keyword search inside text tensor) since BM25 not available I wouldn't call a full hybrid search. https://docs.activeloop.ai/performance-features/querying-datasets/query-syntax" + "support": "full", + "source_url": "https://docs.deeplake.ai/latest/guide/rag/", + "comment": "BM25 with ANN" }, "facets": { "support": "", @@ -58,14 +58,14 @@ "comment": "no native sparse vector support, although it supports all numpy arrays hence can also store sparse numpy arrays" }, "bm25": { - "support": "none", - "source_url": "", + "support": "full", + "source_url": "https://docs.deeplake.ai/latest/#key-features", "comment": "" }, "full_text": { - "support": "partial", - "source_url": "", - "comment": "you can search keywords with TQL `contains(...)` function" + "support": "full", + "source_url": "https://docs.deeplake.ai/latest/api/query/", + "comment": "via Inverted Index and BM25" }, "embeddings_text": { "support": "partial",