-
Notifications
You must be signed in to change notification settings - Fork 0
/
score_funcs.py
199 lines (153 loc) · 5.59 KB
/
score_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from __future__ import annotations
from abc import ABC, abstractmethod
import numpy as np
from misc_utils import check, is_list_of_type, lookat_matrix
from scannet_utils import ObjInstance
from scope_env import GlobalState
SCORE_FUNCTIONS: dict[str, type[ScoreFuncBase]] = {}
def register_score_func(score_func_class: type[ScoreFuncBase]):
assert hasattr(score_func_class, "NEED_ANCHOR")
assert isinstance(score_func_class.NEED_ANCHOR, bool)
assert hasattr(score_func_class, "NAME")
if isinstance(score_func_class.NAME, str):
assert score_func_class.NAME not in SCORE_FUNCTIONS
SCORE_FUNCTIONS[score_func_class.NAME] = score_func_class
elif is_list_of_type(score_func_class.NAME, str):
for name in score_func_class.NAME:
assert name not in SCORE_FUNCTIONS
SCORE_FUNCTIONS[name] = score_func_class
else:
raise SystemError(f"invalid score_func NAME: {score_func_class.NAME}")
class ScoreFuncBase(ABC):
NAME: str | None = None
NEED_ANCHOR: bool | None = None
@staticmethod
@abstractmethod
def get_scores(
candidate_instances: list[ObjInstance],
anchor: ObjInstance | None = None,
) -> list[float]:
"""compute the score for each instance. anchor is optional."""
@register_score_func
class ScoreDistance(ScoreFuncBase):
NAME = "distance"
NEED_ANCHOR = True
@staticmethod
def get_scores(
candidate_instances: list[ObjInstance],
anchor: ObjInstance | None = None,
) -> list[float]:
return [
np.linalg.norm(x.bbox.center - anchor.bbox.center)
for x in candidate_instances
]
@register_score_func
class ScoreSizeX(ScoreFuncBase):
NAME = "size-x"
NEED_ANCHOR = False
@staticmethod
def get_scores(
candidate_instances: list[ObjInstance],
anchor: ObjInstance | None = None,
) -> list[float]:
return [x.bbox.size[0] for x in candidate_instances]
@register_score_func
class ScoreSizeY(ScoreFuncBase):
NAME = "size-y"
NEED_ANCHOR = False
@staticmethod
def get_scores(
candidate_instances: list[ObjInstance],
anchor: ObjInstance | None = None,
) -> list[float]:
return [x.bbox.size[1] for x in candidate_instances]
@register_score_func
class ScoreSizeZ(ScoreFuncBase):
NAME = "size-z"
NEED_ANCHOR = False
@staticmethod
def get_scores(
candidate_instances: list[ObjInstance],
anchor: ObjInstance | None = None,
) -> list[float]:
return [x.bbox.size[2] for x in candidate_instances]
@register_score_func
class ScoreMaxSize(ScoreFuncBase):
NAME = "size"
NEED_ANCHOR = False
@staticmethod
def get_scores(
candidate_instances: list[ObjInstance],
anchor: ObjInstance | None = None,
) -> list[float]:
return [x.bbox.max_extent for x in candidate_instances]
@register_score_func
class ScorePositionZ(ScoreFuncBase):
NAME = "position-z"
NEED_ANCHOR = False
@staticmethod
def get_scores(
candidate_instances: list[ObjInstance],
anchor: ObjInstance | None = None,
) -> list[float]:
return [x.bbox.center[2] for x in candidate_instances]
@register_score_func
class ScoreLeft(ScoreFuncBase):
NAME = "left"
NEED_ANCHOR = False
@staticmethod
def get_scores(
candidate_instances: list[ObjInstance],
anchor: ObjInstance | None = None,
) -> list[float]:
cand_center = np.mean([x.bbox.center for x in candidate_instances], axis=0)
# look at the center of all candidate instances from the room center
world_to_local = lookat_matrix(eye=cand_center, target=GlobalState.room_center)
return [
-(world_to_local @ np.hstack([x.bbox.center, 1]))[0]
for x in candidate_instances
]
@register_score_func
class ScoreRight(ScoreFuncBase):
NAME = "right"
NEED_ANCHOR = False
@staticmethod
def get_scores(
candidate_instances: list[ObjInstance],
anchor: ObjInstance | None = None,
) -> list[float]:
cand_center = np.mean([x.bbox.center for x in candidate_instances], axis=0)
# look at the center of all candidate instances from the room center
world_to_local = lookat_matrix(eye=cand_center, target=GlobalState.room_center)
return [
(world_to_local @ np.hstack([x.bbox.center, 1]))[0]
for x in candidate_instances
]
@register_score_func
class ScoreFront(ScoreFuncBase):
NAME = "front"
NEED_ANCHOR = False
@staticmethod
def get_scores(
candidate_instances: list[ObjInstance],
anchor: ObjInstance | None = None,
) -> list[float]:
cand_center = np.mean([x.bbox.center for x in candidate_instances], axis=0)
# look at the center of all candidate instances from the room center
world_to_local = lookat_matrix(eye=cand_center, target=GlobalState.room_center)
# the larger the z-coord value, the nearer the instance is to the room center, i.e. "to the front"
return [
(world_to_local @ np.hstack([x.bbox.center, 1]))[2]
for x in candidate_instances
]
@register_score_func
class ScoreCenter(ScoreFuncBase):
NAME = ["distance-to-center", "distance-to-middle"]
NEED_ANCHOR = False
@staticmethod
def get_scores(
candidate_instances: list[ObjInstance],
anchor: ObjInstance | None = None,
) -> list[float]:
center = np.mean([x.bbox.center for x in candidate_instances], axis=0)
return [np.linalg.norm(x.bbox.center - center) for x in candidate_instances]