-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess_unlabeled.py
312 lines (252 loc) · 10.4 KB
/
preprocess_unlabeled.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Create the data for sentence pair classification
"""
import os
import sys
import argparse
import numpy as np
import h5py
from collections import defaultdict
class Indexer:
def __init__(self, symbols = ["<blank>"], num_oov=100):
self.num_oov = num_oov
self.d = {}
self.cnt = {}
for s in symbols:
self.d[s] = len(self.d)
self.cnt[s] = 0
for i in range(self.num_oov): #hash oov words to one of 100 random embeddings
oov_word = '<oov'+ str(i) + '>'
self.d[oov_word] = len(self.d)
self.cnt[oov_word] = 10000000 # have a large number for oov word to avoid being pruned
def convert(self, w):
return self.d[w] if w in self.d else self.d['<oov' + str(np.random.randint(self.num_oov)) + '>']
def convert_sequence(self, ls):
return [self.convert(l) for l in ls]
def write(self, outfile, with_cnt=True):
print(len(self.d), len(self.cnt))
assert(len(self.d) == len(self.cnt))
with open(outfile, 'w+') as f:
items = [(v, k) for k, v in self.d.items()]
items.sort()
for v, k in items:
if with_cnt:
f.write('{0} {1} {2}\n'.format(k, v, self.cnt[k]))
else:
f.write('{0} {1}\n'.format(k, v))
def set_word(self, w, idx, count):
self.d[w] = idx
self.cnt[w] = count
# register tokens only appear in wv
# NOTE, only do counting on training set
def register_words(self, wv, seq, count):
for w in seq:
if w in wv and w not in self.d:
self.d[w] = len(self.d)
self.cnt[w] = 0
if w in self.cnt:
self.cnt[w] = self.cnt[w] + 1 if count else self.cnt[w]
# NOTE, only do counting on training set
def register_all_words(self, seq, count):
for w in seq:
if w not in self.d:
self.d[w] = len(self.d)
self.cnt[w] = 0
if w in self.cnt:
self.cnt[w] = self.cnt[w] + 1 if count else self.cnt[w]
def pad(ls, length, symbol, pad_back = True):
if len(ls) >= length:
return ls[:length]
if pad_back:
return ls + [symbol] * (length -len(ls))
else:
return [symbol] * (length -len(ls)) + ls
def get_glove_words(f):
glove_words = set()
for line in open(f, "r"):
word = line.split()[0].strip()
glove_words.add(word)
return glove_words
def make_vocab(opt, glove_vocab, word_indexer, all_word_indexer, label_indexer, sent1, sent2, max_seq_l, count):
num_ex = 0
for _, (src_orig, targ_orig) in enumerate(zip(open(sent1,'r'), open(sent2,'r'))):
if src_orig.rstrip() == '':
continue
if opt.lowercase == 1:
src_orig = src_orig.lower()
targ_orig = targ_orig.lower()
targ = targ_orig.strip().split()
src = src_orig.strip().split()
assert(len(targ) <= max_seq_l and len(src) <= max_seq_l)
all_word_indexer.register_all_words(targ, count)
word_indexer.register_words(glove_vocab, targ, count)
all_word_indexer.register_all_words(src, count)
word_indexer.register_words(glove_vocab, src, count)
num_ex += 1
return num_ex
def load_vocab_to_indexer(path, word_indexer):
vocab = set()
with open(path, 'r') as f:
for l in f:
if l.rstrip() == '':
continue
p = l.split()
tok, idx, cnt = p[0], int(p[1]), int(p[2])
vocab.add(tok)
#
word_indexer.set_word(tok, idx, cnt)
def convert(opt, word_indexer, all_word_indexer, label_indexer, sent1, sent2, output, num_ex):
np.random.seed(opt.seed)
max_seq_l = opt.max_seq_l + 1 #add 1 for BOS
targets = np.zeros((num_ex, max_seq_l), dtype=int)
sources = np.zeros((num_ex, max_seq_l), dtype=int)
all_sources = np.zeros((num_ex, opt.max_seq_l), dtype=int)
all_targets = np.zeros((num_ex, opt.max_seq_l), dtype=int)
labels = np.zeros((num_ex,), dtype =int) # fake some labels to have data format compatible with dev/test
source_lengths = np.zeros((num_ex,), dtype=int)
target_lengths = np.zeros((num_ex,), dtype=int)
ex_idx = np.zeros(num_ex, dtype=int)
batch_keys = np.array([None for _ in range(num_ex)])
ex_id = 0
for _, (src_orig, targ_orig) in enumerate(zip(open(sent1,'r'), open(sent2,'r'))):
if src_orig.rstrip() == '':
continue
if opt.lowercase == 1:
src_orig = src_orig.lower()
targ_orig = targ_orig.lower()
targ_orig = ['<s>'] + targ_orig.strip().split()
src_orig = ['<s>'] + src_orig.strip().split()
label = 'neutral' # fake label
src = pad(src_orig, max_seq_l, '<blank>')
src = word_indexer.convert_sequence(src)
targ = pad(targ_orig, max_seq_l, '<blank>')
targ = word_indexer.convert_sequence(targ)
all_src = pad(src_orig, opt.max_seq_l, '<blank>')
all_src = all_word_indexer.convert_sequence(all_src)
all_targ = pad(targ_orig, opt.max_seq_l, '<blank>')
all_targ = all_word_indexer.convert_sequence(all_targ)
sources[ex_id] = np.array(src, dtype=int)
targets[ex_id] = np.array(targ,dtype=int)
all_sources[ex_id] = np.array(all_src, dtype=int)
all_targets[ex_id] = np.array(all_targ, dtype=int)
source_lengths[ex_id] = (sources[ex_id] != 0).sum()
target_lengths[ex_id] = (targets[ex_id] != 0).sum()
labels[ex_id] = label_indexer.d[label]
batch_keys[ex_id] = (source_lengths[ex_id], target_lengths[ex_id])
ex_id += 1
if ex_id % 100000 == 0:
print("{}/{} sentences processed".format(ex_id, num_ex))
print(ex_id, num_ex)
if opt.shuffle == 1:
rand_idx = np.random.permutation(ex_id)
targets = targets[rand_idx]
sources = sources[rand_idx]
all_sources = all_sources[rand_idx]
all_targets = all_targets[rand_idx]
source_lengths = source_lengths[rand_idx]
target_lengths = target_lengths[rand_idx]
labels = labels[rand_idx]
batch_keys = batch_keys[rand_idx]
ex_idx = rand_idx
# break up batches based on source/target lengths
sorted_keys = sorted([(i, p) for i, p in enumerate(batch_keys)], key=lambda x: x[1])
sorted_idx = [i for i, _ in sorted_keys]
# rearrange examples
sources = sources[sorted_idx]
targets = targets[sorted_idx]
all_sources = all_sources[sorted_idx]
all_targets = all_targets[sorted_idx]
labels = labels[sorted_idx]
target_l = target_lengths[sorted_idx]
source_l = source_lengths[sorted_idx]
ex_idx = rand_idx[sorted_idx]
curr_l_src = 0
curr_l_targ = 0
batch_location = [] #idx where sent length changes
for j,i in enumerate(sorted_idx):
if batch_keys[i][0] != curr_l_src or batch_keys[i][1] != curr_l_targ:
curr_l_src = source_lengths[i]
curr_l_targ = target_lengths[i]
batch_location.append(j)
if batch_location[-1] != len(sources):
batch_location.append(len(sources)-1)
#get batch sizes
curr_idx = 0
batch_idx = [0]
for i in range(len(batch_location)-1):
end_location = batch_location[i+1]
while curr_idx < end_location:
curr_idx = min(curr_idx + opt.batch_size, end_location)
batch_idx.append(curr_idx)
batch_l = []
target_l_new = []
source_l_new = []
for i in range(len(batch_idx)):
end = batch_idx[i+1] if i < len(batch_idx)-1 else len(sources)
batch_l.append(end - batch_idx[i])
source_l_new.append(source_l[batch_idx[i]])
target_l_new.append(target_l[batch_idx[i]])
# sanity check
for k in range(batch_idx[i], end):
assert(source_l[k] == source_l_new[-1])
assert(sources[k, source_l[k]:].sum() == 0)
# Write output
f = h5py.File(output, "w")
f["source"] = sources
f["target"] = targets
f["label"] = labels
f['all_source'] = all_sources
f['all_target'] = all_targets
f["target_l"] = np.array(target_l_new, dtype=int)
f["source_l"] = np.array(source_l_new, dtype=int)
f["batch_l"] = batch_l
f["batch_idx"] = batch_idx
f['ex_idx'] = ex_idx
print("saved {} batches ".format(len(f["batch_l"])))
f.close()
def process(opt):
all_word_indexer = Indexer(symbols=["<blank>","<s>"]) # all tokens will be recorded
word_indexer = Indexer(symbols=["<blank>","<s>"]) # only glove tokens will be recorded
load_vocab_to_indexer(opt.vocab, word_indexer)
load_vocab_to_indexer(opt.vocab_all, all_word_indexer)
glove_vocab = get_glove_words(opt.glove)
label_indexer = Indexer(symbols=["entailment", "neutral", "contradiction"], num_oov=0)
oov_words = []
for i in range(0,100): #hash oov words to one of 100 random embeddings, per Parikh et al. 2016
oov_words.append('<oov'+ str(i) + '>')
word_indexer.register_all_words(oov_words, count=False)
all_word_indexer.register_all_words(oov_words, count=False)
print("First pass through data to get vocab...")
num_unlabeled = make_vocab(opt, glove_vocab, word_indexer, all_word_indexer, label_indexer, opt.sent1, opt.sent2, opt.max_seq_l, count=False) # no counting on unlabeled set
print("Number of examples in unlabeled data: {}".format(num_unlabeled))
print("Number of sentences in unlabeled data: {0}, accumulated number of tokens: {1}/{2}".format(num_unlabeled, len(word_indexer.d), len(all_word_indexer.d)))
word_indexer.write(opt.output + ".word.dict")
all_word_indexer.write(opt.output + ".allword.dict")
label_indexer.write(opt.output + ".label.dict")
print("vocab size: {}".format(len(word_indexer.d)))
assert(len(label_indexer.d) == 3)
convert(opt, word_indexer, all_word_indexer, label_indexer, opt.sent1, opt.sent2, opt.output + ".hdf5", num_unlabeled)
def main(arguments):
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--sent1', help="Path to sent1 unlabeled data.", default = "unlabeled.sent1.txt")
parser.add_argument('--sent2', help="Path to sent2 unlabeled data.", default = "unlabeled.sent2.txt")
parser.add_argument('--dir', help="Path to the data dir",default = "./data/nli_bias/")
parser.add_argument('--vocab', help="Path to the glove vocabulary preprocessed", default = "./data/nli_bias/snli.word.dict")
parser.add_argument('--vocab_all', help="Path to the all word vocabulary preprocessed", default = "./data/nli_bias/snli.allword.dict")
parser.add_argument('--batch_size', help="Size of each minibatch.", type=int, default=32)
parser.add_argument('--max_seq_l', help="Maximum sequence length. Sequences longer than this are dropped.", type=int, default=100)
parser.add_argument('--output', help="Prefix of the output file names. ", type=str, default = "unlabeled")
parser.add_argument('--shuffle', help="If = 1, shuffle sentences before sorting (based on source length).", type = int, default = 1)
parser.add_argument('--seed', help="The random seed", type = int, default = 1)
parser.add_argument('--glove', type = str, default = '')
parser.add_argument('--lowercase', help="Whether to use lowercase for vocabulary.", type=int, default = 1)
opt = parser.parse_args(arguments)
opt.sent1 = opt.dir + opt.sent1
opt.sent2 = opt.dir + opt.sent2
opt.output = opt.dir + opt.output
process(opt)
if __name__ == '__main__':
sys.exit(main(sys.argv[1:]))