-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathembedding_bias.py
118 lines (100 loc) · 4.53 KB
/
embedding_bias.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import sys
sys.path.append('../allennlp')
import h5py
import torch
from torch import nn
from torch import cuda
from holder import *
from util import *
from contractionFunc import *
from torch.autograd import Variable
from contraction import *
import numpy as np
class EmbeddingBias(torch.nn.Module):
def __init__(self, opt, shared):
super(EmbeddingBias, self).__init__()
self.opt = opt
self.shared = shared
if opt.bias_glove != opt.dir:
print('loading embedding bias from {0}'.format(opt.bias_glove))
f = h5py.File(opt.bias_glove, 'r')
bias_glove = f['bias'][:]
if opt.contract_v1 != opt.dir:
print('loading embedding contract1 from {0}'.format(opt.contract_v1))
f = h5py.File(opt.contract_v1, 'r')
v1 = f['bias'][:]
if opt.contract_v2 != opt.dir:
print('loading embedding contract2 from {0}'.format(opt.contract_v2))
f = h5py.File(opt.contract_v2, 'r')
v2 = f['bias'][:]
assert(opt.fix_word_vecs == 1) # this will not work with dynamic word embeddings, natually
if opt.bias_glove != opt.dir:
if opt.bias_type == 'removal1':
self.bias_glove = nn.Parameter(torch.ones(1, 1, opt.word_vec_size), requires_grad=False)
self.bias_glove.data = torch.from_numpy(bias_glove).float().view(1, 1, opt.word_vec_size)
self.bias_glove.skip_init = 1
self.bias_glove.skip_save = 1
elif opt.bias_type == 'removal2':
self.bias_glove = nn.Parameter(torch.ones(1, 2, opt.word_vec_size), requires_grad=False)
self.bias_glove.data = torch.from_numpy(bias_glove).float().view(1, 2, opt.word_vec_size)
self.bias_glove.skip_init = 1
self.bias_glove.skip_save = 1
elif opt.bias_type == 'removal3':
self.bias_glove = nn.Parameter(torch.ones(1, 3, opt.word_vec_size), requires_grad=False)
self.bias_glove.data = torch.from_numpy(bias_glove).float().view(1, 3, opt.word_vec_size)
self.bias_glove.skip_init = 1
self.bias_glove.skip_save = 1
else:
raise Exception('unrecognized bias_type {0}'.format(self.opt.bias_type))
if opt.contract_v1 != opt.dir:
if opt.bias_type == 'contract':
v1 = torch.from_numpy(v1).view(-1, opt.word_vec_size).numpy()
v2 = torch.from_numpy(v2).view(-1, opt.word_vec_size).numpy()
v1, v2 = maxSpan(v1, v2)
U = np.identity(opt.word_vec_size)
U = gsConstrained(U, v1, basis(np.vstack((v1, v2))))
self.contract_glove1 = nn.Parameter(torch.from_numpy(v1).float().view(1,1,opt.word_vec_size), requires_grad=False)
self.contract_glove1.skip_init = 1
self.contract_glove1.skip_save = 1
self.contract_glove2 = nn.Parameter(torch.from_numpy(v2).float().view(1,1,opt.word_vec_size), requires_grad=False)
self.contract_glove2.skip_init = 1
self.contract_glove2.skip_save = 1
self.contract_U = nn.Parameter(torch.from_numpy(U).float().view(1,opt.word_vec_size,opt.word_vec_size), requires_grad=False)
self.contract_U.skip_init = 1
self.contract_U.skip_save = 1
else:
raise Exception('unrecognized bias_type {0}'.format(self.opt.bias_type))
def contraction_correct(self, enc):
rec = enc
enc = correction(self.opt, self.contract_U, self.contract_glove1, self.contract_glove2, enc)
return enc
def forward(self, glove_enc):
batch_l, sent_l, glove_size = glove_enc.shape
if self.opt.bias_glove != self.opt.dir:
if self.opt.bias_type == 'removal1':
bias = self.bias_glove.expand(batch_l, 1, glove_size)
proj = glove_enc.bmm(bias.transpose(1,2)) # batch_l, sent_l, 1
return glove_enc - (proj * bias)
elif self.opt.bias_type == 'removal2':
bias1 = self.bias_glove[:, 0:1, :].expand(batch_l, 1, glove_size)
bias2 = self.bias_glove[:, 1:2, :].expand(batch_l, 1, glove_size)
proj1 = glove_enc.bmm(bias1.transpose(1,2))
proj2 = glove_enc.bmm(bias2.transpose(1,2))
return glove_enc - (proj1*bias1) - (proj2*bias2)
elif self.opt.bias_type == 'removal3':
bias1 = self.bias_glove[:, 0:1, :].expand(batch_l, 1, glove_size)
bias2 = self.bias_glove[:, 1:2, :].expand(batch_l, 1, glove_size)
bias3 = self.bias_glove[:, 2:3, :].expand(batch_l, 1, glove_size)
proj1 = glove_enc.bmm(bias1.transpose(1,2))
proj2 = glove_enc.bmm(bias2.transpose(1,2))
proj3 = glove_enc.bmm(bias3.transpose(1,2))
return glove_enc - (proj1*bias1) - (proj2*bias2) - (proj3*bias3)
else:
raise Exception('unrecognized bias_type {0}'.format(self.opt.bias_type))
if self.opt.contract_v1 != self.opt.dir:
if self.opt.bias_type == 'contract':
return self.contraction_correct(glove_enc)
else:
raise Exception('unrecognized bias_type {0}'.format(self.opt.bias_type))
if __name__ == '__main__':
pass