-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit.py
541 lines (427 loc) · 27.9 KB
/
streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
import streamlit as st
import pandas as pd
import numpy as np
import seaborn as sns
import statsmodels.api as sm
import plotly.graph_objects as go
import plotly.express as px
import matplotlib.pyplot as plt
from scipy.stats import norm
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import MinMaxScaler
st.set_page_config(layout="wide", page_title="Agricultural Dashboard")
# Load the datasets
@st.cache_data
def load_data():
crop_data = pd.read_csv('Crop_data.csv')
area_affected = pd.read_csv('Area_affected.csv')
mgnrega = pd.read_csv('mgnrega.csv')
return crop_data, area_affected, mgnrega
crop_data, area_affected, mgnrega = load_data()
# Custom CSS for styling
st.markdown("""
<style>
.stSelectbox {margin-bottom: 0px;}
.stTab {
background-color: #f0f2f6;
padding: 10px;
border-radius: 5px;
}
.stTab[data-baseweb="tab"] {
height: 50px;
white-space: normal;
padding-top: 10px;
padding-bottom: 10px;
}
.stMetric {
background-color: white;
padding: 10px;
border-radius: 5px;
box-shadow: 0 0 5px rgba(0,0,0,0.1);
}
</style>
""", unsafe_allow_html=True)
# Breadcrumb
st.title("Rural Distress and Mgnrega")
# State and view dropdowns
col1, col2 = st.columns(2)
with col1:
state = st.selectbox("State:", [""] + sorted(mgnrega['State'].unique()))
with col2:
view = st.selectbox("View:", ["", "Data", "Visualization"])
# Only display content if both dropdowns have been selected
if state and view:
if view == "Data":
st.subheader(f"Data for {state}")
st.info(""" * **State:** The geographic region or state where the MGNREGA data is reported.\n * **Rural_Population:** The total population living in rural areas within the state.\n * **year:** The year in which the data was recorded.\n * **No_of_Registered:** The number of individuals registered for MGNREGA work.\n * **Employment_demanded:** The total number of employment days demanded by registered individuals.\n * **Employment_offered:** The total number of employment days offered to individuals.\n * **Employment_Availed:** The total number of employment days availed by individuals.\n """)
# Display MGNREGA data
st.write("MGNREGA Data:")
st.dataframe(mgnrega[mgnrega['State'] == state])
st.info(""" * **Crop:** Type of crop being reported.\n * **State:** Geographic region or state where the crop is grown.\n * **Crop_Year:** The year in which the crop was grown or harvested.\n * **Area_(in_Ha):** Total area (in hectares) of land used for growing the crop.\n * **Production_(in_Tonnes):** Total amount of crop produced, measured in tonnes.\n * **Yield_(kg/Ha):** Average yield of the crop per hectare, measured in kilograms.\n * **MSP:** Minimum Support Price, the price at which the government guarantees to buy the crop.\n * **Annual_rainfall:** Total amount of rainfall received in a year, affecting crop growth.\n * **Cost_of_prod:** Cost incurred in the production of the crop.\n * **Harvest_Price:** Selling price of the crop at harvest time.""")
# Display Crop data
st.write("Crop Data:")
st.dataframe(crop_data[crop_data['State'] == state])
st.info(""" * **Year:** The year in which the data was recorded.\n * **State:** The geographic region or state where the crop area damage is reported.\n * **Total Area of State:** The total crop area of the state.\n * **Area_aff:** The area affected by crop-related issues or factors.\n * **Wages:** The wages paid, likely related to agricultural work or compensation in the affected area.""")
# Display Area Affected data
st.write("Area Affected Data:")
st.dataframe(area_affected[area_affected['State'] == state])
elif view == "Visualization":
# Filter data for the selected state
state_mgnrega = mgnrega[mgnrega['State'] == state].sort_values('year')
state_crop = crop_data[crop_data['State'] == state].sort_values('Crop_Year')
state_area = area_affected[area_affected['State'] == state].sort_values('Year')
# Metrics
col1, col2, col3, col4 = st.columns(4)
latest_year = 2023
prev_year = 2022
latest_data = state_mgnrega[state_mgnrega['year'] == latest_year].iloc[0]
prev_data = state_mgnrega[state_mgnrega['year'] == prev_year].iloc[0] if prev_year in state_mgnrega['year'].values else None
def calculate_change(current, previous):
if previous and previous != 0:
change = (current - previous) / previous * 100
return f"{change:+.2f}% from previous year"
return None
with col1:
st.metric("No. of Registered", f"{latest_data['No_of_Registered']:,}",
calculate_change(latest_data['No_of_Registered'], prev_data['No_of_Registered']) if prev_data is not None else None)
with col2:
st.metric("Employment Demanded", f"{latest_data['Employment_demanded']:,}",
calculate_change(latest_data['Employment_demanded'], prev_data['Employment_demanded']) if prev_data is not None else None)
with col3:
st.metric("Employment Offered", f"{latest_data['Employment_offered']:,}",
calculate_change(latest_data['Employment_offered'], prev_data['Employment_offered']) if prev_data is not None else None)
with col4:
st.metric("Employment Availed", f"{latest_data['Employment_Availed']:,}",
calculate_change(latest_data['Employment_Availed'], prev_data['Employment_Availed']) if prev_data is not None else None)
# Tabs setup
tabs = st.tabs(["Summary Statistics", "APY Trends", "Harvest", "Mgnrega", "Conclusion"])
# Tab 1: APY TRENDS
with tabs[1]:
col1, col2 = st.columns(2)
# First Column: MGNREGA Trends
with col1:
crop = st.selectbox("Select Crop:", [""] + sorted(crop_data['Crop'].unique()))
# Filter data based on selected crop and state (you've already filtered by state elsewhere)
if crop:
state_crop_data = crop_data[(crop_data['State'] == state) & (crop_data['Crop'] == crop)]
st.subheader("APY Trends")
st.caption("Area,Production of Crops")
if not state_crop_data.empty:
fig = go.Figure()
fig.add_trace(go.Scatter(x=state_crop_data['Crop_Year'], y=state_crop_data['Production_(in_Tonnes)'], mode='lines+markers', name='Production', line=dict(color='blue'),hovertemplate="<b>Year</b>: %{x}<br><b>Production</b>: %{y:,}<extra></extra>"))
fig.add_trace(go.Scatter(x=state_crop_data['Crop_Year'], y=state_crop_data['Area_(in_Ha)'], mode='lines+markers', name='Area', line=dict(color='green'), yaxis='y2',hovertemplate="<b>Year</b>: %{x}<br><b>Area</b>: %{y:,}<extra></extra>"))
fig.update_layout(
xaxis_title='Year',
yaxis_title='Production',
yaxis2=dict(title='Area', overlaying='y', side='right'),
legend=dict(orientation='h', yanchor='bottom', y=1.02, xanchor='right', x=1),
margin=dict(l=0, r=0, t=0, b=0),
height=400
)
st.plotly_chart(fig, use_container_width=True)
else:
st.info("No data available for the selected crop.")
else:
st.info("Please select a crop to view the trends.")
# Second Column: Crop Production and Yield
with col2:
st.write("<br>", unsafe_allow_html=True)
st.write("<br>", unsafe_allow_html=True)
st.write("<br>", unsafe_allow_html=True)
if crop:
state_crop_data = crop_data[(crop_data['State'] == state) & (crop_data['Crop'] == crop)]
st.subheader("Crop Production and Yield")
st.caption("Production,Yield of Crops")
if not state_crop_data.empty:
fig = go.Figure()
fig.add_trace(go.Bar(x=state_crop_data['Crop_Year'], y=state_crop_data['Production_(in_Tonnes)'], name='Production',marker_color='#98FB98',hovertemplate="<b>Year</b>: %{x}<br><b>Production</b>: %{y:,}<extra></extra>"))
fig.add_trace(go.Scatter(x=state_crop_data['Crop_Year'], y=state_crop_data['Yield_(kg/Ha)'], mode='lines+markers', name='Yield', yaxis='y2',line=dict(color='rgb(0,100,0)'),hovertemplate="<b>Year</b>: %{x}<br><b>Yield</b>: %{y:,}<extra></extra>"))
fig.update_layout(
title=f"Crop Production and Yield for {state}",
xaxis_title="Year",
yaxis_title="Production (Tonnes)",
yaxis2=dict(title="Yield (kg/Ha)", overlaying='y', side='right'),
margin=dict(l=0, r=0, t=0, b=0),
height=400
)
st.plotly_chart(fig, use_container_width=True)
#------------------------------- Mean,Median,std ---------------------------------------------------------
def display_histograms(data, dataset_name, col1, col2):
numerical_columns = data.select_dtypes(include=['number']).columns
# Split columns for two-column display
mid = len(numerical_columns) // 2
col_list_1 = numerical_columns[:mid]
col_list_2 = numerical_columns[mid:]
with col1:
for column in col_list_1:
if not data[column].isnull().all():
mean = data[column].mean()
median = data[column].median()
std_dev = data[column].std()
st.subheader(f"{column}")
fig, ax = plt.subplots(figsize=(8,4))
# Plot histogram
sns.histplot(data[column].dropna(), bins=20, kde=True, ax=ax, color='skyblue', edgecolor='black', alpha=0.7)
# Generate values for Gaussian curve
x = np.linspace(data[column].min(), data[column].max(), 100)
gaussian_curve = norm.pdf(x, mean, std_dev) * len(data[column].dropna()) * (data[column].max() - data[column].min()) / 20 # Adjust scaling for bins
# Plot Gaussian curve (Mean and Std Dev)
ax.plot(x, gaussian_curve, color='red', linestyle='-', label=f"Gaussian Curve (Mean: {mean:.2f}, Std Dev: {std_dev:.2f})", linewidth=2)
# Plot Median as a vertical line
ax.axvline(median, color='green', linestyle='-', linewidth=2, label=f"Median: {median:.2f}")
# Add legend
ax.legend()
# Display the plot in Streamlit
st.pyplot(fig)
with col2:
for column in col_list_2:
if not data[column].isnull().all():
mean = data[column].mean()
median = data[column].median()
std_dev = data[column].std()
st.subheader(f"{column}")
fig, ax = plt.subplots(figsize=(8,4))
# Plot histogram
sns.histplot(data[column].dropna(), bins=20, kde=True, ax=ax, color='skyblue', edgecolor='black', alpha=0.7)
# Generate values for Gaussian curve
x = np.linspace(data[column].min(), data[column].max(), 100)
gaussian_curve = norm.pdf(x, mean, std_dev) * len(data[column].dropna()) * (data[column].max() - data[column].min()) / 20 # Adjust scaling for bins
# Plot Gaussian curve (Mean and Std Dev)
ax.plot(x, gaussian_curve, color='red', linestyle='-', label=f"Gaussian Curve (Mean: {mean:.2f}, Std Dev: {std_dev:.2f})", linewidth=2)
# Plot Median as a vertical line
ax.axvline(median, color='green', linestyle='-', linewidth=2, label=f"Median: {median:.2f}")
# Add legend
ax.legend()
# Display the plot in Streamlit
st.pyplot(fig)
# --------------- OUTLIERS -------------------------------------------
# Function to create box plots for outliers
def create_box_plots(data, dataset_name, col1, col2):
numerical_columns = data.select_dtypes(include=['number']).columns
# Split the columns for two-column display
mid = len(numerical_columns) // 2
col_list_1 = numerical_columns[:mid]
col_list_2 = numerical_columns[mid:]
with col1:
for column in col_list_1:
if not data[column].isnull().all(): # Check if the column has valid data
st.subheader(f"{column} Outliers - {dataset_name}")
fig = px.box(data, y=column, title=f"Outliers in {column}")
st.plotly_chart(fig, use_container_width=True)
with col2:
for column in col_list_2:
if not data[column].isnull().all(): # Check if the column has valid data
st.subheader(f"{column} Outliers - {dataset_name}")
fig = px.box(data, y=column, title=f"Outliers in {column}")
st.plotly_chart(fig, use_container_width=True)
# ---------------- QQ PLOT ------------------------------------
def create_qq_plots(data, dataset_name, col1, col2):
numerical_columns = data.select_dtypes(include=['number']).columns
# Split columns for two-column display
mid = len(numerical_columns) // 2
col_list_1 = numerical_columns[:mid]
col_list_2 = numerical_columns[mid:]
with col1:
for column in col_list_1:
if not data[column].isnull().all(): # Check if the column has valid data
st.subheader(f"{column} Normality Check (QQ Plot) - {dataset_name}")
fig, ax = plt.subplots(figsize=(6,3))
sm.qqplot(data[column], line='s', ax=ax)
st.pyplot(fig)
with col2:
for column in col_list_2:
if not data[column].isnull().all(): # Check if the column has valid data
st.subheader(f"{column} Normality Check (QQ Plot) - {dataset_name}")
fig, ax = plt.subplots(figsize=(6,3))
sm.qqplot(data[column], line='s', ax=ax)
st.pyplot(fig)
def create_correlation_plot(data, selected_columns, col1, col2, method='spearman'):
if len(selected_columns) >= 2:
data = data[selected_columns]
corr_matrix = data.corr(method=method)
# Plot the correlation matrix
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap='viridis', vmin=-1, vmax=1, ax=ax, fmt='.2f', cbar=True)
plt.title(f"Spearman Correlation Matrix ({method.capitalize()})", pad=20)
with col1:
st.pyplot(fig)
else:
st.info("Please select at least two columns to display correlation.")
# Tab 2: PRICE ANALYSIS INSIGHTS
with tabs[0]:
st.subheader("Summary Statistics • Outliers • Normal Distribution • Correlation Analysis")
analysis_type = st.selectbox("Select Analysis", ["Mean, Median, Std Dev", "Outliers", "QQ Plot","Correlation Analysis" ])
if analysis_type != "Selwect an Option":
col1, col2 = st.columns(2)
# Display the selected type of analysis
if analysis_type == "Mean, Median, Std Dev":
display_histograms(crop_data, "Crop Data", col1, col2)
display_histograms(mgnrega, "Production Data", col1, col2)
display_histograms(area_affected, "Area Data", col1, col2)
elif analysis_type == "Outliers":
create_box_plots(crop_data, "Crop Data", col1, col2)
create_box_plots(mgnrega, "Production Data", col1, col2)
create_box_plots(area_affected, "Area Data", col1, col2)
elif analysis_type == "QQ Plot":
create_qq_plots(crop_data, "Crop Data", col1, col2)
create_qq_plots(mgnrega, "Production Data", col1, col2)
create_qq_plots(area_affected, "Area Data", col1, col2)
elif analysis_type == "Correlation Analysis":
all_datasets = {
"Crop Data": crop_data,
"Dataset 2": mgnrega,
"Dataset 3": area_affected
}
# Combine all datasets into one DataFrame
combined_data = pd.concat(all_datasets.values(), axis=1)
# Dropdown to select columns for correlation
numerical_columns = combined_data.select_dtypes(include=['number']).columns
selected_columns = st.multiselect("Select Columns to Correlate:", numerical_columns)
col1, col2 = st.columns(2)
# Create correlation plot
create_correlation_plot(combined_data, selected_columns, col1, col2)
else:
st.info("Please select an analysis type from the dropdown.")
#----------------------- HARVEST PRICE --------------------------------------------------------
with tabs[2]:
col1, col2 = st.columns(2)
# First Column: MGNREGA Trends
with col2:
st.subheader("Price Trends")
if crop and state:
state_crop_data = crop_data[(crop_data['State'] == state) & (crop_data['Crop'] == crop)]
st.subheader("")
st.caption("Cost Production vs Harvest Price")
if not state_crop_data.empty:
fig = go.Figure()
fig.add_trace(go.Scatter(x=state_crop_data['Crop_Year'], y=state_crop_data['cost_of_prod'], mode='lines+markers', name='Production_Cost', line=dict(color='blue'), hovertemplate="<b>Year</b>: %{x}<br><b>Production Cost</b>: %{y:,}<extra></extra>"))
fig.add_trace(go.Scatter(x=state_crop_data['Crop_Year'], y=state_crop_data['Harvest_Price'], mode='lines+markers', name='Harvest Price', line=dict(color='green'), yaxis='y2', hovertemplate="<b>Year</b>: %{x}<br><b>Harvest Price</b>: %{y:,}<extra></extra>"))
fig.update_layout(
xaxis_title='Year',
yaxis_title='Production',
yaxis2=dict(title='Area', overlaying='y', side='right'),
legend=dict(orientation='h', yanchor='bottom', y=1.02, xanchor='right', x=1),
margin=dict(l=0, r=0, t=0, b=0),
height=400
)
st.plotly_chart(fig, use_container_width=True)
else:
st.info("No data available for the selected crop.")
else:
st.info("Please select a crop and state to view the trends.")
# Second Column: Feature Importance
with col1:
st.subheader("Cost Production and Harvest Price")
st.caption("Feature Importance")
# Identify categorical columns and the 'Crop_Year' column
categorical_cols = crop_data.select_dtypes(include=['object']).columns
year_col = 'Crop_Year'
# Create a list of columns to scale (exclude categorical and Crop_Year columns)
cols_to_scale = [col for col in crop_data.columns if col not in categorical_cols and col != year_col and col != 'Harvest_Price']
# Apply Min-Max scaling
scaler = MinMaxScaler()
crop_data[cols_to_scale] = scaler.fit_transform(crop_data[cols_to_scale])
# Initialize a dictionary to store feature importances for each year
feature_importance_dict = {}
# Separate the dataset by Crop_Year
grouped = crop_data.groupby('Crop_Year')
for year, group in grouped:
# Separate features (X) and target (y)
X = group[cols_to_scale] # All columns except 'Crop_Year', categorical, and 'Harvest_Price'
y = group['Harvest_Price'] # Use 'Harvest_Price' as the target variable
# Train Random Forest model
rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(X, y)
# Get feature importance for the current year
feature_importance = rf.feature_importances_
feature_importance_dict[year] = feature_importance
# Plot feature importance for each year
plt.figure(figsize=(14, 8))
feature_names = cols_to_scale
for i, year in enumerate(sorted(feature_importance_dict.keys())):
plt.bar([f"{feature}\n{year}" for feature in feature_names], feature_importance_dict[year], alpha=0.7, label=f"Year {year}")
plt.xlabel('Features and Year', fontsize=14)
plt.ylabel('Feature Importance', fontsize=14)
plt.xticks(rotation=90, fontsize=10)
plt.yticks(fontsize=12)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.legend(title='Year')
st.pyplot(plt.gcf())
plt.close()
#-------------------------------------- EMPLOYMENT DEMANDED---------------------------
def scale_data(df):
target_cols = ['Rural_Population', 'No_of_Registered', 'Employment_demanded', 'Employment_offered', 'Employment_Availed']
# Apply Min-Max scaling
scaler = MinMaxScaler()
df[target_cols] = scaler.fit_transform(df[target_cols])
return df
scaled_mgnrega = scale_data(mgnrega)
# Streamlit app
with tabs[3]:
col1, col2 = st.columns(2)
# First Column: Employment Trends
with col1:
st.subheader("Employment Trends")
st.caption("Employment Demanded vs Employment Offered")
year = st.selectbox("Select Year:", sorted(scaled_mgnrega['year'].unique()))
if state:
state_data = scaled_mgnrega[scaled_mgnrega['State'] == state]
if not state_data.empty:
fig = go.Figure()
fig.add_trace(go.Scatter(
x=state_data['year'],
y=state_data['Employment_demanded'],
mode='lines+markers',
name='Employment Demanded',
line=dict(color='blue'),
hovertemplate="<b>Year</b>: %{x}<br><b>Employment Demanded</b>: %{y:,}<extra></extra>"
))
fig.add_trace(go.Scatter(
x=state_data['year'],
y=state_data['Employment_offered'],
mode='lines+markers',
name='Employment Offered',
line=dict(color='green'),
hovertemplate="<b>Year</b>: %{x}<br><b>Employment Offered</b>: %{y:,}<extra></extra>"
))
fig.update_layout(
xaxis_title='Year',
yaxis_title='Employment Demanded',
legend=dict(orientation='h', yanchor='bottom', y=1.02, xanchor='right', x=1),
margin=dict(l=0, r=0, t=0, b=0),
height=400
)
st.plotly_chart(fig, use_container_width=True)
else:
st.info("No data available for the selected state.")
else:
st.info("Please select a state to view the trends.")
# Second Column: Feature Importance as Pie Chart
with col2:
st.subheader("Feature Importance")
if year:
year_df = scaled_mgnrega[scaled_mgnrega['year'] == year]
feature_cols = ['Rural_Population', 'No_of_Registered', 'Employment_demanded', 'Employment_offered']
target_col = 'Employment_Availed'
X = year_df[feature_cols]
y = year_df[target_col]
model = RandomForestRegressor()
model.fit(X, y)
importances = model.feature_importances_
features = X.columns
colors = [ '#eb5f1a','#f6a417', '#66c6de', '#fecf16']
# Ensure the color palette length matches the number of features
color_palette = colors[:len(features)] # This trims the color palette if there are fewer features than colors
# Plot feature importance as a pie chart
fig, ax = plt.subplots(figsize=(8, 8))
ax.pie(importances, labels=features, autopct='%1.1f%%', startangle=90, colors=color_palette)
ax.axis('equal')
st.pyplot(fig)
else:
st.info("Please select a year to view the feature importance.")
with tabs[4]:
st.info("* **Feature Importance Distribution :** Feature Importance is done using Random forest Regressor ,Features consistently ranked highly over multiple years strongly influence the target variable (msp , production ,yield). Variability in importance suggests changes in external factors .")
st.info("* **Year-wise Comparison :** A consistent feature importance across multiple years suggests that the relationship between input features and the target variable remains relatively stable, indicating the model is effectively capturing long-term trends. On the other hand, significant year-over-year changes in feature importance may imply the model needs to adjust to new patterns, such as evolving agricultural practices or changing market conditions.")
st.info("* **Impact on Decision-Making :** If features like Employment Availed or Employment Offered grow in importance, it signals a stronger influence of labor factors on outcomes, guiding decision-makers to focus on related policies. Conversely, decreasing importance of certain features suggests they may be losing relevance, warranting a review of their role in decision-making and modeling.")
else:
st.info("Please select a State and View option to display the dashboard.")