-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinvidx.py
228 lines (185 loc) · 7.2 KB
/
invidx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import re,os
from lxml import etree
#from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
import json
#import pickle
import gzip
#from collections import OrderedDict
import argparse
from constants import STOP_WORDS, WORD2NUM, MONTH_ABR
from math import sqrt
from utils import *
import glob
porter = PorterStemmer()
def read_dataset(collpath,indexfile):
TAG_NER = set(["P:","L:","O:"])
xml = None
for_max_freq, for_doc_norm, for_doc_no = [],[],[]
dictionary, documents = {}, [for_doc_no,for_doc_norm,for_max_freq]
POSTINGS, INDEX = [], [dictionary,documents]
posting_idx = 0
# l = 0 # for debugging:: length of words
#files = os.listdir(collpath)
i,j = 0,0
for file in glob.iglob( os.path.join(collpath, '*') ):
""" For debugging
if i != 236:
i+=1
continue
print(file)
"""
#if not os.path.is_file(file):
# continue
#print("Scanning file {}".format(i+1))
with open(file,'r') as f:
xml = "<r>"+f.read()+"</r>"
xml = xml.replace("&","") # AND is a STOP_WORD
root = etree.fromstring(xml,parser=etree.XMLParser(recover=True))
for doc in root.findall("DOC"):
max_freq = 1 ## max frequency of words
#norm_const = 0
docno = doc.find("DOCNO").text.strip()
#print(docno)
texts = doc.findall('TEXT')
for text in texts:
text = etree.tostring(text).decode()
#text = re.sub(r"(</?TEXT>|`|\'s|\'|\’|\?|\,|\.|\"|\+|\:|\;|\!|\%)","",text)
#text = re.sub(r"(\-|\_)"," ",text)
#text = " ".join(word_tokenize(text))
text = text.lower()
# do NOT replace /
#text = text.replace('<text>','').replace('</text>','').replace("'s","").replace("'","").replace("’","").replace('"',"").replace("`","").replace(".","").replace("?","").replace(",","").replace("!","").replace(":","").replace(" amp;"," ").replace(";","").replace("+","").replace("%","").replace("-"," ").replace("_"," ")
#text = text.replace('< text >','').replace('< /text >','').replace("'","").replace("’","").replace('"',"").replace("`","").replace(".","").replace("?","").replace(",","").replace("!","").replace(":","").replace(" amp;"," ").replace(";","").replace("+","").replace("%","").replace("-"," ").replace("_"," ").replace("~","").replace("|","")
text = text.replace('<text>','').replace('</text>','').replace("'s","").replace("'","").replace("’","").replace('"',"").replace("`","").replace(".","").replace("?","").replace(",","").replace("!","").replace(":","").replace(" amp;"," ").replace(";","").replace("+","").replace("%","").replace("-"," ").replace("_"," ").replace("~"," ").replace("|"," ")
#print(text)
#print("\n\n\n")
#text = text.lower()
# Should I replace this too??
#text = re.sub(r"</(.*?)><(.*?)>",r"</\1> <\2>",text) # If no space between closing and opening tag, make space
#text = re.sub(r"<organization>\s(.*?)\s</organization>",r"O:\1",text)
#text = re.sub(r"<location>\s(.*?)\s</location>",r"L:\1",text)
#text = re.sub(r"<person>\s(.*?)\s</person>",r"P:\1",text)
#print(text)
text = text.replace("<organization> ","O:").replace("<location> ","L:").replace("<person> ","P:").replace("</organization>","").replace("</location>","").replace("</person>","")
#text = text.replace("< organization > ","O:").replace("< location > ","L:").replace("< person > ","P:").replace("< /organization >","").replace("< /location >","").replace("< /person >","")
#print(text)
#print("\n\n\n")
text = [porter.stem(word) if word[:2] not in TAG_NER else word for word in text.split() if word not in STOP_WORDS]
#print(text)
for word in text:
if word in WORD2NUM:
word = WORD2NUM[word]
elif word in MONTH_ABR:
word = MONTH_ABR[word]
if word not in dictionary:
dictionary.update({word:[0,posting_idx]})
POSTINGS.append([j,1]) # [[[j,1]],[[j+1,1]]]
posting_idx+=1
#norm_const += 1
#dictionary.update({word:[[j,1]]})
else:
postings = POSTINGS[dictionary[word][1]]
if j == postings[-2]:
postings[-1] += 1
max_freq = max(max_freq,postings[-1])
# + < n^2 - (n-1)^2 > = + < (n-n+1)*(2*n-1) >
#norm_const += (2*postings[-1]-1)
else:
#postings.append(j)
#postings.append(1)
postings.extend([j,1])
#norm_const += 1
''' Get max length of words
for word in text:
dictionary[word]= dictionary.get(word,0) + 1
l = max(len(word),l)
if l == len(word):
print(word,end="\t")
'''
#documents.append([docno,max_freq,0]) # update count of words in doc
for_max_freq.append(max_freq)
for_doc_no.append(docno)
#for_doc_norm.append(0)
j += 1
i += 1
#print("====================\nTotal documents found: {}".format(j))
#for word in dictionary:
# dictionary[word] = [len(dictionary[word]),dictionary[word]]
#documents[""] = j ## total documents
#print(dictionary)
#print("\n\n\n",documents)
#print(l) # for debugging:: length of words
"""
POSTINGS = []
DICT = OrderedDict()
i = 0
for key in sorted(dictionary):
posting = dictionary[key]
POSTINGS.append(posting)
DICT.update({key:[len(posting),i]})
i+=1
INDEX = [DICT,documents]
"""
#n_docs = len(documents)
n_docs = j
for_doc_norm = [0 for i in range(n_docs)]
#documents[1] = for_doc_norm
#print(j)
for key in dictionary:
val = dictionary[key]
posting = POSTINGS[val[1]]
df_raw = len(posting) //2
val[0] = df_raw
df = idf(df_raw,n_docs)
## beaware of d_gap eposting = POSTINGS[]
prev_doc = 0
for i in range(df_raw):
#for doc_id,freq in zip(posting[::2], posting[1::2]):
doc_id = posting[2*i]
freq = posting[2*i+1]
#curr_doc = for_doc_no[doc_id]
freq_max = for_max_freq[doc_id]
f = tf(freq,freq_max)
#curr_doc[2] += (df*f)**2
#for_doc_norm[doc_id] = sqrt(for_doc_norm[doc_id]**2 + (df*f)**2)
for_doc_norm[doc_id] += (df*f)**2
posting[2*i],prev_doc = posting[2*i]-prev_doc,posting[2*i]
#for i in range(n_docs):
# for_doc_norm[i] = float("{:.4f}".format(sqrt(for_doc_norm[i])))
### LOOK AT THIS!!!
for_doc_norm = [float("{:.4f}".format(sqrt(norm_el))) for norm_el in for_doc_norm]
documents[1] = for_doc_norm
#print(dictionary)
#print("\n\n\n")
#print(documents)
#print('\n\n\n\n\n')
#print(POSTINGS)
"""
with open(str(indexfile)+'.dict', 'w') as fp:
json.dump(INDEX,fp)
with open(str(indexfile)+'.idx', 'w') as fp:
json.dump(POSTINGS,fp)
"""
#check if utf-8 required
with gzip.GzipFile(str(indexfile)+'.dict', 'w') as f:
f.write(json.dumps(INDEX).encode('utf-8'))
with gzip.GzipFile(str(indexfile)+'.idx', 'w') as f:
f.write(json.dumps(POSTINGS).encode('utf-8'))
"""
with gzip.open(str(indexfile)+'.dict', 'wt') as f:
json.dump(INDEX, f)
with gzip.open(str(indexfile)+'.idx', 'wt',encoding="ascii") as f:
json.dump(POSTINGS, f)
"""
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Inverted indexing of the collection')
parser.add_argument('collpath', metavar='coll-path',
help='the directory containing the files containing documents of the collection')
parser.add_argument('indexfile', metavar='indexfile',
help='the name of the generated index files')
args = parser.parse_args()
collpath = args.collpath
indexfile = args.indexfile
#print("Executing...")
read_dataset(collpath,indexfile)