-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
67 lines (54 loc) · 2.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
from fastapi import FastAPI
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import DirectoryLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import VectorstoreIndexCreator
from langchain.indexes.vectorstore import VectorStoreIndexWrapper
from langchain.vectorstores import Chroma
from models.AnswerModel import Answer
from models.QuestionModel import Question
os.environ["OPENAI_API_KEY"] = 'API-KEY'
# save to disk and reuse the model (repeated queries on the same data)
PERSIST = False
query = None
# can be used to start app with question param -> main.py 'This is my question'
# if len(sys.argv) > 1:
# query = sys.argv[1]
if PERSIST and os.path.exists("persist"):
print("Reusing index...\n")
vectorstore = Chroma(persist_directory="persist", embedding_function=OpenAIEmbeddings())
index = VectorStoreIndexWrapper(vectorstore=vectorstore)
else:
loader = DirectoryLoader("data/")
if PERSIST:
index = VectorstoreIndexCreator(vectorstore_kwargs={"persist_directory": "persist"}).from_loaders([loader])
else:
index = VectorstoreIndexCreator().from_loaders([loader])
chain = ConversationalRetrievalChain.from_llm(
llm=ChatOpenAI(model="gpt-3.5-turbo"),
retriever=index.vectorstore.as_retriever(search_kwargs={"k": 1}),
)
chat_history = []
#
# CLI input Prompts without fastApi
#
# while True:
# if not query:
# query = input("Prompt: ")
# if query in ['quit', 'q', 'exit']:
# sys.exit()
# result = chain({"question": query, "chat_history": chat_history})
# print(result['answer'])
#
# chat_history.append((query, result['answer']))
# query = None
app = FastAPI()
@app.post("/question")
async def question(q: Question):
print("Question: " + q.text)
result = chain({"question": q.text, "chat_history": chat_history})
print("Answer: " + result['answer'])
chat_history.append((q.text, result['answer']))
return Answer(result['answer'])