-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsolver.py
180 lines (145 loc) · 6.05 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import wandb
import torch
import torch.nn as nn
import yaml
import sys
import os
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
from glob import glob
from torch.utils.data import DataLoader
from torch.optim import Adam
from models.circle import CircleRegressor
from utils.helper import set_device, to_numpy, to_tensor
from datasets.dataset import CircleData
PATHS = yaml.safe_load(open("paths.yaml"))
for k in PATHS:
sys.path.append(PATHS[k])
class CircleSolver:
"""This solver runs a regression training model that predict the label of inner or outer circle.
Methods
-------
run(gpu_id='')
Run the whole training process using specific gpu or cpu if blank string was given.
"""
def __init__(self, config) -> None:
config = yaml.safe_load(open(PATHS["CONFIG"] + config))
self.__dict__.update({}, **config)
if self.use_wandb:
upload_config = {}
upload_config.update(config["model_params"])
upload_config.update(config["loader_params"])
wandb.init(config=upload_config, project="My-PyTorch-Codebook")
self.progress_folder = os.path.join(PATHS["PROGRESS"], self.run_name)
if os.path.exists(self.progress_folder):
files = glob(os.path.join(self.progress_folder, "*.png"))
for file in files:
os.remove(file)
else:
os.makedirs(self.progress_folder)
self.figure = plt.figure(figsize=(10, 10))
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu")
def _train(self, dataloader):
"""Training the model"""
# Set the model to training mode inplace.
self.model.train()
total_epoch = self.model_params["N_epoch"]
# Wandb magic.
if self.use_wandb:
wandb.watch(self.model, log_freq=100)
for epoch in range(total_epoch):
with tqdm(dataloader, unit="batch") as tepoch:
tepoch.set_description(f"Epoch {epoch+1}/{total_epoch}")
epoch_loss = 0.
for r_data, r_label in tepoch:
# Send data and label to compute device.
data, label = to_tensor(r_data), to_tensor(r_label)
# Reset the gradien inside optimizer.
self.optim.zero_grad()
# Pass data to model and compute forward.
_, pred = self.model(data)
if self.log_progress:
x, y = self.train_dataset.get_raw()
x, y = to_tensor(x), to_tensor(y)
transformed_point, eval_pred = self.model(x)
self._log_progress(
epoch, transformed_point, y)
# Calcaulate loss between prediction and ground truth.
loss = self.loss_func(pred, label.reshape(-1, 1))
# Backpropagation
loss.backward()
# Gradient step
self.optim.step()
# Summarize loss and acc in every step.
epoch_loss += to_numpy(loss)
show_epoch_loss = np.round(epoch_loss, 4)
# Update progress bar.
tepoch.set_postfix(loss=show_epoch_loss)
if self.use_wandb:
wandb.log({
"loss": epoch_loss,
})
def _predict(self, dataloader):
# Change model to evaluation mode inplace.
self.model.eval()
total_pred = None
with torch.no_grad():
for data, label in dataloader:
data, label = data.to(self.device), label.to(self.device)
intermidiate, pred = self.model(to_tensor(data))
if torch.is_tensor(total_pred):
total_pred = torch.concat((total_pred, pred), 0)
else:
total_pred = pred
return total_pred
def _log_progress(self, epoch, data, label):
plt.clf()
data_x, data_y, label = to_numpy(
data[:, 0]), to_numpy(data[:, 1]), to_numpy(label)
plt.subplot(111)
plt.ylabel("y")
plt.xlabel("x")
plt.scatter(data_x, data_y, c=label)
plt.savefig(os.path.join(self.progress_folder, "epoch_%03d.png" % epoch))
def run(self, gpu_id):
set_device(gpu_id)
# Set seeds manually, so the result is reproducable.
torch.manual_seed(self.random_state)
np.random.seed(self.random_state)
# Get train and test dataset and fit into dataloader.
self.train_dataset = CircleData(
self.loader_params, self.random_state, is_train=True)
train_dataloader = DataLoader(
dataset=self.train_dataset,
batch_size=self.loader_params["batch_size"],
shuffle=True,
)
self.test_dataset = CircleData(
self.loader_params, self.random_state, is_train=False)
test_dataloader = DataLoader(
dataset=self.test_dataset,
batch_size=self.loader_params["batch_size"],
shuffle=True,
)
# Create model object and loss function and optimizer function.
self.model = CircleRegressor(self.model_params).to(self.device)
self.loss_func = nn.BCELoss()
self.optim = Adam(self.model.parameters(), lr=self.model_params["lr"])
# Train
self._train(train_dataloader)
# Evaluation
train_loss = self._predict(train_dataloader)
test_loss = self._predict(test_dataloader)
# Calculate mse for evaluating train and test data.
# NOTE: Not sure what's this part.
train_score = self.loss_func(
train_loss, to_tensor(self.train_dataset.label))
test_score = self.loss_func(
test_loss, to_tensor(self.test_dataset.label))
if self.use_wandb:
wandb.log({
"train_score": train_score,
"test_score": test_score
})