-
Notifications
You must be signed in to change notification settings - Fork 4
/
predict.py
271 lines (223 loc) · 8.86 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import BertTokenizer, BertModel
from transformers import AdamW, WarmupLinearSchedule
import numpy as np
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import StratifiedKFold
import tqdm
import csv
import random
import matplotlib.pyplot as plt
import os
import sys
if not os.path.exists("model/task2/model_{}_state".format(sys.argv[1])):
print("NOT FOUND")
sys.exit()
import math
class gelu(nn.Module):
def __init__(self):
super(gelu, self).__init__()
def forward(self, x):
cdf = 0.5 * (1.0 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
return x * cdf
class MutiLabelModel(nn.Module):
def __init__(self, encoder, emb_size=1024, out_size=4, ce_size=4, hidden=256): # hidden=256
super(MutiLabelModel, self).__init__()
self.encoder = encoder
self.fn_size = emb_size
# self.fc1 = nn.Linear(emb_size, hidden)
# self.rnn1 = nn.LSTM(emb_size, hidden, 1, batch_first=True, bidirectional=True) # False
# self.rnn2 = nn.LSTM(hidden, hidden, 1, batch_first=True, bidirectional=True)
# self.softmax = nn.Softmax(dim=1)
self.out_fn = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(self.fn_size, self.fn_size//2),
gelu(),
nn.Dropout(0.2),
nn.Linear(self.fn_size//2, out_size),
)
# self.out_fn2 = nn.Sequential(
# gelu(),
# nn.Dropout(0.2),
# nn.Linear(self.fn_size//8+ce_size, out_size)
# )
def forward(self, inp, seg_inp, cat_emb=None, cls_loc=0): # , inp_title, seg_inp_title, cls_loc=0):
# batch = 1
embs = self.encoder(inp, token_type_ids=seg_inp)[0] # [batch, seq, hidden]
# embs_title = self.encoder(inp_title, token_type_ids=seg_inp_title)[0] # [batch, seq, hidden]
outputs = embs[:, cls_loc, :]
# outputs = torch.cat((cat_emb, outputs), 1)
# outputs_title = embs_title[:, cls_loc, :]
# outputs = torch.cat((outputs, outputs_title), 1)
# embs_title = self.encoder(inp_title, token_type_ids=seg_inp_title)[0]
# outputs, _ = self.rnn1(embs)
# outputs_title, _ = self.rnn1(embs_title)
# outputs = outputs.transpose(0, 1)[cls_loc]
# outputs_title = outputs_title.transpose(0, 1)[cls_loc]
# outputs = torch.cat((outputs, outputs_title), 1)
# emb_title = self.encoder(inp_title, token_type_ids=seg_inp_title)[0][:, cls_loc, :] # [batch, emb]
# emb_title = self.fc1(emb_title) # [batch, hidden]
# outputs, _ = self.rnn1(embs) # [batch, seq, hidden]
# attention = torch.mm(emb_title, outputs.squeeze(0).transpose(0, 1)) # [batch, seq]
# attention = self.softmax(attention).transpose(0, 1) # [seq, batch]
# outputs = outputs.squeeze(0) * attention # [seq, hidden]
# outputs, _ = self.rnn2(outputs.unsqueeze(0)) # [batch, seq, hidden]
# outputs = outputs.transpose(0, 1)[cls_loc] # [batch, hidden*2]
outputs = self.out_fn(outputs)
# outputs = torch.cat((cat_emb, outputs), 1)
# outputs = self.out_fn2(outputs)
return outputs
use_cuda = torch.cuda.is_available()
if use_cuda:
print("using cuda!")
col_names = []
raw_data = []
with open("data/task2_trainset.csv") as f:
rows = csv.reader(f)
for row in rows:
if row[0] == "Id":
col_names = row
continue
raw_data.append(row)
categories = {"THEORETICAL": 0, "ENGINEERING": 1, "EMPIRICAL": 2, "OTHERS": 3}
for row in raw_data:
row[2] = row[2].replace("$$$", " ")
row[3] = row[3].split("/")
row[4] = row[4].split("/")
row[6] = row[6].split()
tmp = [0, 0, 0, 0]
for cat in row[6]:
tmp[categories[cat]] = 1
row.remove(row[6])
if tmp == [1, 0, 0, 0]:
tmp = [0] + tmp
elif tmp == [0, 1, 0, 0]:
tmp = [1] + tmp
elif tmp == [0, 0, 1, 0]:
tmp = [2] + tmp
elif tmp == [1, 1, 0, 0]:
tmp = [3] + tmp
elif tmp == [1, 0, 1, 0]:
tmp = [4] + tmp
elif tmp == [0, 1, 1, 0]:
tmp = [5] + tmp
elif tmp == [1, 1, 1, 0]:
tmp = [6] + tmp
else:
tmp = [7] + tmp
assert len(tmp) == 5
row += tmp
ratios = [0.0, 0.0, 0.0, 0.0]
base = [0.0, 0.0, 0.0, 0.0]
for i in range(-4, 0):
ratios[i] = sum([x[i] for x in raw_data]) / len(raw_data)
base[i] = 2*ratios[i] / (1+ratios[i])
class Data():
def __init__(self, idxs, is_test):
self.title = []
self.sent = []
self.label = []
self.category = []
self.idxs = idxs
self.is_test = is_test
def readData(self, data_path):
with open(data_path) as fd:
rows = csv.reader(fd)
first = True
idx = 0
for row in rows:
if first:
first = False
continue
elif idx in self.idxs:
self.title.append(row[1])
self.sent.append(row[2].replace("$$$", " "))
self.category.append(row[4].split("/"))
self.category[-1] = [cat.split(".")[0] for cat in self.category[-1]]
if not self.is_test:
cates = row[6].split()
tmp = [0, 0, 0, 0]
for cate in cates:
tmp[categories[cate]] = 1
self.label.append(tmp)
idx += 1
def batchData(self, batch_size):
batch_num = np.ceil(len(self.sent) / batch_size)
batch_X = []
batch_Y = []
for b in range(batch_num):
batch_X.append(self.sent[b*batch_size:(b+1)*batch_size])
batch_Y.append(self.label[b*batch_size:(b+1)*batch_size])
return batch_X, batch_Y
data_dir = "data"
test_data = Data(idxs=[i for i in range(20000)], is_test=True)
test_data.readData(data_dir+"/task2_private_testset.csv")
# load pre-trained bert
print("loading bert...")
tokenizer = BertTokenizer.from_pretrained('scibert_scivocab_uncased')
MAX_LEN = 512
seed = int(sys.argv[1])
take = 4
print("seed:", seed)
device = torch.device("cuda:"+sys.argv[2])
print("device: {}".format(device))
encoder = BertModel.from_pretrained('scibert_scivocab_uncased')
model = MutiLabelModel(encoder, 768, take)
model.load_state_dict(torch.load("./model/task2/model_{}_state".format(seed), map_location=device))
model = model.to(device)
model = model.eval()
test_loss = 0.0
thrld = np.ones((1,4))*0.35
# thrld = np.ones((1,4))*0.5
# thrld[0][0] = 0.35
# thrld[0][1] = 0.3
# thrld[0][2] = 0.25
# thrld[0][3] = 0.35
thrld_ten = torch.from_numpy(thrld).float().to(device)
preds = []
ids = []
with torch.no_grad():
for sidx, s in tqdm.tqdm(enumerate(test_data.sent), total=20000):
# category
# tmp = []
# for cat in test_data.category[sidx]:
# if cat in list(category_counts.keys()):
# tmp.append(cat)
# test_data.category[sidx] = tmp.copy()
# category_emb = [sum([category_counts[cat][i] for cat in test_data.category[sidx]]) for i in range(4)]
# category_emb = [ce/sum(category_emb) for ce in category_emb]
# category_emb = torch.tensor([category_emb]).float()
# if use_cuda:
# category_emb = category_emb.to(device)
# abstract
indexed_tokens = tokenizer.add_special_tokens_single_sequence(tokenizer.encode(s))[:MAX_LEN]
input_ids = torch.tensor([indexed_tokens]).long()
if use_cuda:
input_ids = input_ids.to(device)
segments_ids = [ 0 for i in range(len(indexed_tokens)) ]
segments_ids = torch.tensor([segments_ids]).long()
if use_cuda:
segments_ids = segments_ids.to(device)
out = model(input_ids, segments_ids) # , category_emb)
out = torch.sigmoid(out)
pred1 = (out > thrld_ten.expand(torch.Size([1, 4]))).float()
max_idx = torch.argmax(out, 1, keepdim=True)
one_hot = torch.FloatTensor(out.shape).to(device)
one_hot.zero_()
pred2=one_hot.scatter_(1, max_idx, 1)
pred=(pred1+pred2>=1).float()
preds.append(pred.cpu().tolist())
ids.append("T"+str(sidx+20001))
preds = [pred[0] for pred in preds]
for i in range(len(preds)):
for j in range(len(preds[i])):
preds[i][j] = int(preds[i][j])
with open("results/task2/result_{}.csv".format(seed), "w", newline="") as f:
w = csv.writer(f)
w.writerow(["order_id", "THEORETICAL", "ENGINEERING", "EMPIRICAL", "OTHERS"])
for i in range(1, 20001):
w.writerow(["T"+"0"*(5-len(str(i)))+str(i), 0, 0, 0, 0])
for i in range(len(ids)):
w.writerow([ids[i]]+preds[i])