Skip to content

Commit

Permalink
Merge pull request #313 from stemangiola/quantile-normalise-custom-ta…
Browse files Browse the repository at this point in the history
…rget

Quantile normalise custom target
  • Loading branch information
stemangiola authored May 15, 2024
2 parents 87b2d87 + d64967f commit dfbd885
Show file tree
Hide file tree
Showing 4 changed files with 60 additions and 18 deletions.
29 changes: 20 additions & 9 deletions R/methods.R
Original file line number Diff line number Diff line change
Expand Up @@ -586,19 +586,25 @@ setMethod("scale_abundance", "tidybulk", .scale_abundance)
#' @param .sample The name of the sample column
#' @param .transcript The name of the transcript/gene column
#' @param .abundance The name of the transcript/gene abundance column
#' @param method A character string. Either "limma_normalize_quantiles" for limma::normalizeQuantiles or "preprocesscore_normalize_quantiles_use_target" for preprocessCore::normalize.quantiles.use.target for large-scale dataset, where limmma could not be compatible.
#' @param method A character string. Either "limma_normalize_quantiles" for limma::normalizeQuantiles or "preprocesscore_normalize_quantiles_use_target" for preprocessCore::normalize.quantiles.use.target for large-scale datasets.
#' @param target_distribution A numeric vector. If NULL the target distribution will be calculated by preprocessCore. This argument only affects the "preprocesscore_normalize_quantiles_use_target" method.
#' @param action A character string between "add" (default) and "only". "add" joins the new information to the input tbl (default), "only" return a non-redundant tbl with the just new information.
#'
#'
#' @details Scales transcript abundance compensating for sequencing depth
#' (e.g., with TMM algorithm, Robinson and Oshlack doi.org/10.1186/gb-2010-11-3-r25).
#' Lowly transcribed transcripts/genes (defined with minimum_counts and minimum_proportion parameters)
#' are filtered out from the scaling procedure.
#' The scaling inference is then applied back to all unfiltered data.
#' @details Tranform the feature abundance across samples so to have the same quantile distribution (using preprocessCore).
#'
#' Underlying method
#' edgeR::calcNormFactors(.data, method = c("TMM","TMMwsp","RLE","upperquartile"))
#'
#'
#' If `limma_normalize_quantiles` is chosen
#'
#' .data |>limma::normalizeQuantiles()
#'
#' If `preprocesscore_normalize_quantiles_use_target` is chosen
#'
#' .data |>
#' preprocessCore::normalize.quantiles.use.target(
#' target = preprocessCore::normalize.quantiles.determine.target(.data)
#' )
#'
#'
#' @return A tbl object with additional columns with scaled data as `<NAME OF COUNT COLUMN>_scaled`
Expand All @@ -621,6 +627,7 @@ setGeneric("quantile_normalise_abundance", function(.data,
.transcript = NULL,
.abundance = NULL,
method = "limma_normalize_quantiles",
target_distribution = NULL,
action = "add")
standardGeneric("quantile_normalise_abundance"))

Expand All @@ -630,6 +637,8 @@ setGeneric("quantile_normalise_abundance", function(.data,
.transcript = NULL,
.abundance = NULL,
method = "limma_normalize_quantiles",
target_distribution = NULL,

action = "add")
{

Expand Down Expand Up @@ -685,10 +694,12 @@ setGeneric("quantile_normalise_abundance", function(.data,
BiocManager::install("preprocessCore", ask = FALSE)
}

if(is.null(target_distribution)) target_distribution = preprocessCore::normalize.quantiles.determine.target(.data_norm)

.data_norm_quant =
.data_norm |>
preprocessCore::normalize.quantiles.use.target(
target = preprocessCore::normalize.quantiles.determine.target(.data_norm)
target = target_distribution
)

colnames(.data_norm_quant) = .data_norm |> colnames()
Expand Down
5 changes: 4 additions & 1 deletion R/methods_SE.R
Original file line number Diff line number Diff line change
Expand Up @@ -248,6 +248,7 @@ setMethod("scale_abundance",
.transcript = NULL,
.abundance = NULL,
method = "limma_normalize_quantiles",
target_distribution = NULL,
action = NULL) {


Expand Down Expand Up @@ -311,10 +312,12 @@ setMethod("scale_abundance",
assay(my_assay) |>
as.matrix()

if(is.null(target_distribution)) target_distribution = preprocessCore::normalize.quantiles.determine.target(.data_norm)

.data_norm =
.data_norm |>
preprocessCore::normalize.quantiles.use.target(
target = preprocessCore::normalize.quantiles.determine.target(.data_norm)
target = target_distribution
)

colnames(.data_norm) = .data |> assay(my_assay) |> colnames()
Expand Down
28 changes: 21 additions & 7 deletions man/quantile_normalise_abundance-methods.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

16 changes: 15 additions & 1 deletion tests/testthat/test-bulk_methods_SummarizedExperiment.R
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,21 @@ test_that("quantile normalisation",{
filter(a=="SRR1740035" & b=="ABCB9") |>
dplyr::pull(c_scaled)
)


target_distribution =
se_mini |>
assay( "count") |>
as.matrix() |>
preprocessCore::normalize.quantiles.determine.target()

se_mini |>
quantile_normalise_abundance(
method = "preprocesscore_normalize_quantiles_use_target",
target_distribution = target_distribution
) |>
expect_no_error()


})

test_that("tidybulk SummarizedExperiment normalisation subset",{
Expand Down

0 comments on commit dfbd885

Please sign in to comment.