From ba9fb0b51ab47015834de523149cbefa0dde48b1 Mon Sep 17 00:00:00 2001 From: Stefano Mangiola Date: Fri, 10 May 2024 12:08:44 +0930 Subject: [PATCH] update documentation --- DESCRIPTION | 2 +- R/methods.R | 2 +- man/test_differential_abundance-methods.Rd | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index f5201a1a..eec2a78f 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Type: Package Package: tidybulk Title: Brings transcriptomics to the tidyverse -Version: 1.15.7 +Version: 1.15.8 Authors@R: c(person("Stefano", "Mangiola", email = "mangiolastefano@gmail.com", role = c("aut", "cre")), person("Maria", "Doyle", email = "Maria.Doyle@petermac.org", diff --git a/R/methods.R b/R/methods.R index 3a40ba9e..f03fea94 100755 --- a/R/methods.R +++ b/R/methods.R @@ -2584,7 +2584,7 @@ setMethod("ensembl_to_symbol", "tidybulk", .ensembl_to_symbol) #' @param .abundance The name of the transcript/gene abundance column #' #' @param contrasts This parameter takes the format of the contrast parameter of the method of choice. For edgeR and limma-voom is a character vector. For DESeq2 is a list including a character vector of length three. The first covariate is the one the model is tested against (e.g., ~ factor_of_interest) -#' @param method A string character. Either "edgeR_quasi_likelihood" (i.e., QLF), "edgeR_likelihood_ratio" (i.e., LRT), "edger_robust_likelihood_ratio", "DESeq2", "limma_voom", "limma_voom_sample_weights" +#' @param method A string character. Either "edgeR_quasi_likelihood" (i.e., QLF), "edgeR_likelihood_ratio" (i.e., LRT), "edger_robust_likelihood_ratio", "DESeq2", "limma_voom", "limma_voom_sample_weights", "glmmseq_lme4", "glmmseq_glmmtmb" #' @param test_above_log2_fold_change A positive real value. This works for edgeR and limma_voom methods. It uses the `treat` function, which tests that the difference in abundance is bigger than this threshold rather than zero \url{https://pubmed.ncbi.nlm.nih.gov/19176553}. #' @param scaling_method A character string. The scaling method passed to the back-end functions: edgeR and limma-voom (i.e., edgeR::calcNormFactors; "TMM","TMMwsp","RLE","upperquartile"). Setting the parameter to \"none\" will skip the compensation for sequencing-depth for the method edgeR or limma-voom. #' @param omit_contrast_in_colnames If just one contrast is specified you can choose to omit the contrast label in the colnames. diff --git a/man/test_differential_abundance-methods.Rd b/man/test_differential_abundance-methods.Rd index 7d1a01db..01472dbe 100755 --- a/man/test_differential_abundance-methods.Rd +++ b/man/test_differential_abundance-methods.Rd @@ -137,7 +137,7 @@ test_differential_abundance( \item{contrasts}{This parameter takes the format of the contrast parameter of the method of choice. For edgeR and limma-voom is a character vector. For DESeq2 is a list including a character vector of length three. The first covariate is the one the model is tested against (e.g., ~ factor_of_interest)} -\item{method}{A string character. Either "edgeR_quasi_likelihood" (i.e., QLF), "edgeR_likelihood_ratio" (i.e., LRT), "edger_robust_likelihood_ratio", "DESeq2", "limma_voom", "limma_voom_sample_weights"} +\item{method}{A string character. Either "edgeR_quasi_likelihood" (i.e., QLF), "edgeR_likelihood_ratio" (i.e., LRT), "edger_robust_likelihood_ratio", "DESeq2", "limma_voom", "limma_voom_sample_weights", "glmmseq_lme4", "glmmseq_glmmtmb"} \item{test_above_log2_fold_change}{A positive real value. This works for edgeR and limma_voom methods. It uses the `treat` function, which tests that the difference in abundance is bigger than this threshold rather than zero \url{https://pubmed.ncbi.nlm.nih.gov/19176553}.}