Skip to content

Latest commit

 

History

History
54 lines (38 loc) · 1.35 KB

HYPER-PARAMETERS.md

File metadata and controls

54 lines (38 loc) · 1.35 KB

Models' hyper-parameters configuration

Decision Tree (CART)

Parameter Possible values
criterion 'gini', 'entropy'
splitter 'best', 'random'
max_features 'auto', 'sqrt', 'log2', None
class_weight 'balanced', None

Logistic Regression

Parameter Possible values
penalty 'l2', 'none'
tol numpy.logspace(start=-5, stop=-3, num=10)
C numpy.linspace(start=0, stop=2, num=10)
class_weight 'balanced', None
solver 'lbfgs', 'sag', 'saga'
fit_intercept False, True

Naive Bayes

Parameter Possible values
var_smoothing numpy.logspace(start=-10, stop=-8, num=10)

Random Forest

Parameter Possible values
n_estimators [int(x) for x in np.linspace(start = 100, stop = 2000, num = 10)]
max_features 'auto', 'sqrt'
max_depth [int(x) for x in np.linspace(10, 110, num = 11)], None
bootstrap False, True

Support Vector Machine

Parameter Possible values
C [int(x) for x in np.linspace(start = 1, stop = 1000, num = 100)]
gamma 'scale', 'auto'
kernel 'rbf', 'sigmoid', 'poly'
degree 1, 2, 3, 4, 5
shrinking False, True
tol [x for x in np.logspace(start = -5, stop = -1, num = 10)]
class_weight 'balanced', None