Skip to content

Compute the principal square root for each element in a single-precision floating-point strided array.

License

Notifications You must be signed in to change notification settings

stdlib-js/math-strided-special-ssqrt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

ssqrt

NPM version Build Status Coverage Status

Compute the principal square root for each element in a single-precision floating-point strided array.

Installation

npm install @stdlib/math-strided-special-ssqrt

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var ssqrt = require( '@stdlib/math-strided-special-ssqrt' );

ssqrt( N, x, strideX, y, strideY )

Computes the principal square root for each element in a single-precision floating-point strided array x and assigns the results to elements in a single-precision floating-point strided array y.

var Float32Array = require( '@stdlib/array-float32' );

var x = new Float32Array( [ 0.0, 4.0, 9.0, 12.0, 24.0 ] );

// Perform operation in-place:
ssqrt( x.length, x, 1, x, 1 );
// x => <Float32Array>[ 0.0, 2.0, 3.0, ~3.464, ~4.899 ]

The function accepts the following arguments:

  • N: number of indexed elements.
  • x: input Float32Array.
  • strideX: index increment for x.
  • y: output Float32Array.
  • strideY: index increment for y.

The N and stride parameters determine which elements in x and y are accessed at runtime. For example, to index every other value in x and to index the first N elements of y in reverse order,

var Float32Array = require( '@stdlib/array-float32' );

var x = new Float32Array( [ 0.0, 4.0, 9.0, 12.0, 24.0, 64.0 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

ssqrt( 3, x, 2, y, -1 );
// y => <Float32Array>[ ~4.899, 3.0, 0.0, 0.0, 0.0, 0.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float32Array = require( '@stdlib/array-float32' );

// Initial arrays...
var x0 = new Float32Array( [ 0.0, 4.0, 9.0, 12.0, 24.0, 64.0 ] );
var y0 = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

ssqrt( 3, x1, -2, y1, 1 );
// y0 => <Float32Array>[ 0.0, 0.0, 0.0, 8.0, ~3.464, 2.0 ]

ssqrt.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )

Computes the principal square root for each element in a single-precision floating-point strided array x and assigns the results to elements in a single-precision floating-point strided array y using alternative indexing semantics.

var Float32Array = require( '@stdlib/array-float32' );

var x = new Float32Array( [ 0.0, 4.0, 9.0, 12.0, 24.0 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] );

ssqrt.ndarray( x.length, x, 1, 0, y, 1, 0 );
// y => <Float32Array>[ 0.0, 2.0, 3.0, ~3.464, ~4.899 ]

The function accepts the following additional arguments:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, the offsetX and offsetY parameters support indexing semantics based on starting indices. For example, to index every other value in x starting from the second value and to index the last N elements in y,

var Float32Array = require( '@stdlib/array-float32' );

var x = new Float32Array( [ 0.0, 4.0, 9.0, 12.0, 24.0, 64.0 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

ssqrt.ndarray( 3, x, 2, 1, y, -1, y.length-1 );
// y => <Float32Array>[ 0.0, 0.0, 0.0, 8.0, ~3.464, 2.0 ]

Examples

var uniform = require( '@stdlib/random-base-uniform' );
var Float32Array = require( '@stdlib/array-float32' );
var ssqrt = require( '@stdlib/math-strided-special-ssqrt' );

var x = new Float32Array( 10 );
var y = new Float32Array( 10 );

var i;
for ( i = 0; i < x.length; i++ ) {
    x[ i ] = uniform( 0.0, 200.0 );
}
console.log( x );
console.log( y );

ssqrt.ndarray( x.length, x, 1, 0, y, -1, y.length-1 );
console.log( y );

C APIs

Usage

#include "stdlib/math/strided/special/ssqrt.h"

stdlib_strided_ssqrt( N, *X, strideX, *Y, strideY )

Computes the principal square root for each element in a single-precision floating-point strided array X and assigns the results to elements in a single-precision floating-point strided array Y.

#include <stdint.h>

const float X[] = { 0.0, 4.0, 9.0, 12.0, 24.0, 64.0, 81.0, 101.0 };
float Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };

const int64_t N = 4;

stdlib_strided_ssqrt( N, X, 2, Y, 2 );

The function accepts the following arguments:

  • N: [in] int64_t number of indexed elements.
  • X: [in] float* input array.
  • strideX: [in] int64_t index increment for X.
  • Y: [out] float* output array.
  • strideY: [in] int64_t index increment for Y.
void stdlib_strided_ssqrt( const int64_t N, const float *X, const int64_t strideX, float *Y, const int64_t strideY );

Examples

#include "stdlib/math/strided/special/ssqrt.h"
#include <stdint.h>
#include <stdio.h>

int main( void ) {
    // Create an input strided array:
    const float X[] = { 0.0, 4.0, 9.0, 12.0, 24.0, 64.0, 81.0, 101.0 };

    // Create an output strided array:
    float Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };

    // Specify the number of elements:
    const int64_t N = 4;

    // Specify the stride lengths:
    const int64_t strideX = 2;
    const int64_t strideY = 2;

    // Compute the results:
    stdlib_strided_ssqrt( N, X, strideX, Y, strideY );

    // Print the results:
    for ( int i = 0; i < 8; i++ ) {
        printf( "Y[ %i ] = %f\n", i, Y[ i ] );
    }
}

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.