-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathREADME.Rmd
59 lines (41 loc) · 3.03 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
output: github_document
---
# surveysd <img src="man/figures/logo.png" align="right" alt="" />
[![Travis build status](https://img.shields.io/travis/statistikat/surveysd.svg?logo=travis)](https://travis-ci.org/statistikat/surveysd)
[![Coverage Status](https://img.shields.io/coveralls/github/statistikat/surveysd.svg?colorB=red&logo=codecov)](https://coveralls.io/github/statistikat/surveysd?branch=master)
[![Lifecycle: stable](https://img.shields.io/badge/lifecycle-maturing-blue.svg?logo=github)](https://lifecycle.r-lib.org/articles/stages.html#stable)
[![GitHub last commit](https://img.shields.io/github/last-commit/statistikat/surveysd.svg?logo=github)](https://github.com/statistikat/surveysd/commits/master)
[![GitHub code size in bytes](https://img.shields.io/github/languages/code-size/statistikat/surveysd.svg?logo=github)](https://github.com/statistikat/surveysd)
[![Downloads](http://cranlogs.r-pkg.org/badges/surveysd)](https://CRAN.R-project.org/package=surveysd)
[![CRAN](https://img.shields.io/cran/v/surveysd.svg?colorB=green&logo=R&logoColor=blue&label=CRAN)](https://CRAN.R-project.org/package=surveysd)
[![Mentioned in Awesome Official Statistics ](https://awesome.re/mentioned-badge.svg)](http://www.awesomeofficialstatistics.org)
This is the development place for the R-package `surveysd`. The package can be used to estimate
the standard deviation of estimates in complex surveys using bootstrap weights.
## Installation
```{r, eval = FALSE}
# Install release version from CRAN
install.packages("surveysd")
# Install development version from GitHub
devtools::install_github("statistikat/surveysd")
```
## Concept
Bootstrapping has long been around and used widely to estimate confidence intervals and standard
errors of point estimates. This package aims to combine all necessary steps for applying a calibrated
bootstrapping procedure with custom estimating functions.
## Workflow
A typical workflow with this package consists of three steps. To see these concepts in practice,
please refer to the [getting started vignette].
* Calibrated weights can be generated with the function `ipf()` using an iterative proportional updating algorithm.
* Bootstrap samples are drawn with rescaled bootstrapping in the function `draw.bootstrap()`.
* These samples can then be calibrated with an iterative proportional updating algorithm using
`recalib()`.
* Finally, estimation functions can be applied over all bootstrap replicates with `calc.stError()`.
## Further reading
More information can be found on the [github-pages site] for surveysd.
* The methodology is covered in the [methodology vignette].
* A more comprehensive documentation of `calc.stError()` is available in the [error estimation vignette].
[methodology vignette]: https://statistikat.github.io/surveysd/articles/methodology.html
[error estimation vignette]: https://statistikat.github.io/surveysd/articles/error_estimation.html
[getting started vignette]: https://statistikat.github.io/surveysd/articles/surveysd.html
[github-pages site]: https://statistikat.github.io/surveysd