-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_regression_training.py
46 lines (38 loc) · 1.38 KB
/
evaluate_regression_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.pyplot as plt
dt = np.load('loss_experiments/vgg16_losses_adaptive.npy')
(train_losses, train_r2, val_losses, val_r2) = dt
x_data = np.arange(700)
plt.plot(x_data, train_losses, label='Training MSE Loss')
plt.plot(x_data, val_losses, label='Validation MSE Loss')
plt.legend()
plt.xlabel('Number of Epochs')
plt.ylabel('Loss')
plt.savefig('loss_experiments/vgg16_regression_loss_plots')
plt.close()
plt.plot(x_data, train_r2, label='Training Set r2')
plt.plot(x_data, val_r2, label='Validation Set r2')
plt.legend()
plt.xlabel('Number of Epochs')
plt.ylabel('r2')
plt.savefig('loss_experiments/vgg16_regression_r2_plots')
dt = np.load('loss_experiments/resnet50_denmap/resnet50_den_losses.npy')
(train_losses, train_r2, val_losses, val_r2) = dt
x_data = np.arange(len(train_losses))
plt.close()
plt.plot(x_data, train_losses, label='Training MSE Loss')
plt.plot(x_data, val_losses, label='Validation MSE Loss')
plt.legend()
plt.xlabel('Number of Epochs')
plt.ylabel('Loss')
plt.savefig('loss_experiments/resnet50_denmap/resnet50_regression_loss_plots')
print(val_r2)
print(train_r2)
plt.close()
plt.plot(x_data, train_r2, label='Training Set r2')
plt.plot(x_data, val_r2, label='Validation Set r2')
plt.legend()
plt.xlabel('Number of Epochs')
plt.ylabel('r2')
plt.savefig('loss_experiments/resnet50_denmap/resnet50_regression_r2_plots')