-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathutilsKinematics.py
509 lines (406 loc) · 21.9 KB
/
utilsKinematics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
'''
---------------------------------------------------------------------------
OpenCap processing: utilsKinematics.py
---------------------------------------------------------------------------
Copyright 2022 Stanford University and the Authors
Author(s): Antoine Falisse, Scott Uhlrich
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy
of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
import os
import opensim
import copy
import utils
import numpy as np
import pandas as pd
import scipy.interpolate as interpolate
from utilsProcessing import lowPassFilter
from utilsTRC import trc_2_dict
import numpy as np
from scipy.spatial.transform import Rotation
class kinematics:
def __init__(self, sessionDir, trialName,
modelName=None,
lowpass_cutoff_frequency_for_coordinate_values=-1):
self.lowpass_cutoff_frequency_for_coordinate_values = (
lowpass_cutoff_frequency_for_coordinate_values)
# Model.
opensim.Logger.setLevelString('error')
modelBasePath = os.path.join(sessionDir, 'OpenSimData', 'Model')
# Load model if specified, otherwise load the one that was on server
if modelName is None:
modelName = utils.get_model_name_from_metadata(sessionDir)
modelPath = os.path.join(modelBasePath,modelName)
else:
modelPath = os.path.join(modelBasePath,
'{}.osim'.format(modelName))
# make sure model exists
if not os.path.exists(modelPath):
raise Exception('Model path: ' + modelPath + ' does not exist.')
self.model = opensim.Model(modelPath)
self.model.initSystem()
# Motion file with coordinate values.
motionPath = os.path.join(sessionDir, 'OpenSimData', 'Kinematics',
'{}.mot'.format(trialName))
# Create time-series table with coordinate values.
self.table = opensim.TimeSeriesTable(motionPath)
tableProcessor = opensim.TableProcessor(self.table)
self.columnLabels = list(self.table.getColumnLabels())
tableProcessor.append(opensim.TabOpUseAbsoluteStateNames())
self.time = np.asarray(self.table.getIndependentColumn())
# Initialize the state trajectory. We will set it in other functions
# if it is needed.
self._stateTrajectory = None
# Filter coordinate values.
if lowpass_cutoff_frequency_for_coordinate_values > 0:
tableProcessor.append(
opensim.TabOpLowPassFilter(
lowpass_cutoff_frequency_for_coordinate_values))
# Convert in radians.
self.table = tableProcessor.processAndConvertToRadians(self.model)
# Trim if filtered.
if lowpass_cutoff_frequency_for_coordinate_values > 0:
time_temp = self.table.getIndependentColumn()
self.table.trim(
time_temp[self.table.getNearestRowIndexForTime(self.time[0])],
time_temp[self.table.getNearestRowIndexForTime(self.time[-1])])
# Compute coordinate speeds and accelerations and add speeds to table.
self.Qs = self.table.getMatrix().to_numpy()
self.Qds = np.zeros(self.Qs.shape)
self.Qdds = np.zeros(self.Qs.shape)
columnAbsoluteLabels = list(self.table.getColumnLabels())
for i, columnLabel in enumerate(columnAbsoluteLabels):
spline = interpolate.InterpolatedUnivariateSpline(
self.time, self.Qs[:,i], k=3)
# Coordinate speeds
splineD1 = spline.derivative(n=1)
self.Qds[:,i] = splineD1(self.time)
# Coordinate accelerations.
splineD2 = spline.derivative(n=2)
self.Qdds[:,i] = splineD2(self.time)
# Add coordinate speeds to table.
columnLabel_speed = columnLabel[:-5] + 'speed'
self.table.appendColumn(
columnLabel_speed,
opensim.Vector(self.Qds[:,i].flatten().tolist()))
# Append missing muscle states to table.
# Needed for StatesTrajectory.
stateVariableNames = self.model.getStateVariableNames()
stateVariableNamesStr = [
stateVariableNames.get(i) for i in range(
stateVariableNames.getSize())]
existingLabels = self.table.getColumnLabels()
for stateVariableNameStr in stateVariableNamesStr:
if not stateVariableNameStr in existingLabels:
vec_0 = opensim.Vector([0] * self.table.getNumRows())
self.table.appendColumn(stateVariableNameStr, vec_0)
# Number of muscles.
self.nMuscles = 0
self.forceSet = self.model.getForceSet()
for i in range(self.forceSet.getSize()):
c_force_elt = self.forceSet.get(i)
if 'Muscle' in c_force_elt.getConcreteClassName():
self.nMuscles += 1
# Coordinates.
self.coordinateSet = self.model.getCoordinateSet()
self.nCoordinates = self.coordinateSet.getSize()
self.coordinates = [self.coordinateSet.get(i).getName()
for i in range(self.nCoordinates)]
# Find rotational and translational coordinates.
self.idxColumnTrLabels = [
self.columnLabels.index(i) for i in self.coordinates if \
self.coordinateSet.get(i).getMotionType() == 2]
self.idxColumnRotLabels = [
self.columnLabels.index(i) for i in self.coordinates if \
self.coordinateSet.get(i).getMotionType() == 1]
# TODO: hard coded
self.rootCoordinates = [
'pelvis_tilt', 'pelvis_list', 'pelvis_rotation',
'pelvis_tx', 'pelvis_ty', 'pelvis_tz']
self.lumbarCoordinates = ['lumbar_extension', 'lumbar_bending',
'lumbar_rotation']
self.armCoordinates = ['arm_flex_r', 'arm_add_r', 'arm_rot_r',
'elbow_flex_r', 'pro_sup_r',
'arm_flex_l', 'arm_add_l', 'arm_rot_l',
'elbow_flex_l', 'pro_sup_l']
# Only set the state trajectory when needed because it is slow.
def stateTrajectory(self):
if self._stateTrajectory is None:
self._stateTrajectory = (
opensim.StatesTrajectory.createFromStatesTable(
self.model, self.table))
return self._stateTrajectory
def get_marker_dict(self, session_dir, trial_name,
lowpass_cutoff_frequency=-1):
trcFilePath = os.path.join(session_dir,
'MarkerData',
'{}.trc'.format(trial_name))
markerDict = trc_2_dict(trcFilePath)
if lowpass_cutoff_frequency > 0:
markerDict['markers'] = {
marker_name: lowPassFilter(self.time, data, lowpass_cutoff_frequency)
for marker_name, data in markerDict['markers'].items()}
return markerDict
def rotate_marker_dict(self, markerDict, euler_angles):
# euler_angles is a dictionary with keys being the axes of rotation
# (x, y, z) and values being the angles in degrees. e.g. {'x': 90, 'y': 180}
rotated_marker_dict = copy.deepcopy(markerDict)
rotated_marker_dict['markers'] = {}
rotation = Rotation.from_euler(''.join(list(euler_angles.keys())),
list(euler_angles.values()), degrees=True)
for marker, positions in markerDict['markers'].items():
rotated_positions = rotation.apply(positions)
rotated_marker_dict['markers'][marker] = rotated_positions
return rotated_marker_dict
def rotate_com(self, comValues, euler_angles):
# euler_angles is a dictionary with keys being the axes of rotation
# (x, y, z) and values being the angles in degrees. e.g. {'x': 90, 'y': 180}
rotation = Rotation.from_euler(''.join(list(euler_angles.keys())),
list(euler_angles.values()), degrees=True)
# turn the x, y, z dataframe entries into a into a 3xN array
comValuesArray = comValues[['x','y','z']].to_numpy()
rotated_com = rotation.apply(comValuesArray)
# turn back into a dataframe with time as first column
rotated_com = pd.DataFrame(data=np.concatenate((np.expand_dims(comValues['time'].to_numpy(), axis=1), rotated_com), axis=1),
columns=['time','x','y','z'])
return rotated_com
def get_coordinate_values(self, in_degrees=True,
lowpass_cutoff_frequency=-1):
# Convert to degrees.
if in_degrees:
Qs = np.zeros((self.Qs.shape))
Qs[:, self.idxColumnTrLabels] = self.Qs[:, self.idxColumnTrLabels]
Qs[:, self.idxColumnRotLabels] = (
self.Qs[:, self.idxColumnRotLabels] * 180 / np.pi)
else:
Qs = self.Qs
# Filter.
if lowpass_cutoff_frequency > 0:
Qs = lowPassFilter(self.time, Qs, lowpass_cutoff_frequency)
if self.lowpass_cutoff_frequency_for_coordinate_values > 0:
print("Warning: You are filtering the coordinate values a second time; coordinate values were filtered when creating your class object.")
# Return as DataFrame.
data = np.concatenate(
(np.expand_dims(self.time, axis=1), Qs), axis=1)
columns = ['time'] + self.columnLabels
self.coordinate_values = pd.DataFrame(data=data, columns=columns)
return self.coordinate_values
def get_coordinate_speeds(self, in_degrees=True,
lowpass_cutoff_frequency=-1):
# Convert to degrees.
if in_degrees:
Qds = np.zeros((self.Qds.shape))
Qds[:, self.idxColumnTrLabels] = (
self.Qds[:, self.idxColumnTrLabels])
Qds[:, self.idxColumnRotLabels] = (
self.Qds[:, self.idxColumnRotLabels] * 180 / np.pi)
else:
Qds = self.Qds
# Filter.
if lowpass_cutoff_frequency > 0:
Qds = lowPassFilter(self.time, Qds, lowpass_cutoff_frequency)
# Return as DataFrame.
data = np.concatenate(
(np.expand_dims(self.time, axis=1), Qds), axis=1)
columns = ['time'] + self.columnLabels
coordinate_speeds = pd.DataFrame(data=data, columns=columns)
return coordinate_speeds
def get_coordinate_accelerations(self, in_degrees=True,
lowpass_cutoff_frequency=-1):
# Convert to degrees.
if in_degrees:
Qdds = np.zeros((self.Qdds.shape))
Qdds[:, self.idxColumnTrLabels] = (
self.Qdds[:, self.idxColumnTrLabels])
Qdds[:, self.idxColumnRotLabels] = (
self.Qdds[:, self.idxColumnRotLabels] * 180 / np.pi)
else:
Qdds = self.Qdds
# Filter.
if lowpass_cutoff_frequency > 0:
Qdds = lowPassFilter(self.time, Qdds, lowpass_cutoff_frequency)
# Return as DataFrame.
data = np.concatenate(
(np.expand_dims(self.time, axis=1), Qdds), axis=1)
columns = ['time'] + self.columnLabels
coordinate_accelerations = pd.DataFrame(data=data, columns=columns)
return coordinate_accelerations
def get_muscle_tendon_lengths(self, lowpass_cutoff_frequency=-1):
# Compute muscle-tendon lengths.
lMT = np.zeros((self.table.getNumRows(), self.nMuscles))
for i in range(self.table.getNumRows()):
self.model.realizePosition(self.stateTrajectory()[i])
if i == 0:
muscleNames = []
for m in range(self.forceSet.getSize()):
c_force_elt = self.forceSet.get(m)
if 'Muscle' in c_force_elt.getConcreteClassName():
cObj = opensim.Muscle.safeDownCast(c_force_elt)
lMT[i,m] = cObj.getLength(self.stateTrajectory()[i])
if i == 0:
muscleNames.append(c_force_elt.getName())
# Filter.
if lowpass_cutoff_frequency > 0:
lMT = lowPassFilter(self.time, lMT, lowpass_cutoff_frequency)
# Return as DataFrame.
data = np.concatenate(
(np.expand_dims(self.time, axis=1), lMT), axis=1)
columns = ['time'] + muscleNames
muscle_tendon_lengths = pd.DataFrame(data=data, columns=columns)
return muscle_tendon_lengths
def get_moment_arms(self, lowpass_cutoff_frequency=-1):
# Compute moment arms.
dM = np.zeros((self.table.getNumRows(), self.nMuscles,
self.nCoordinates))
for i in range(self.table.getNumRows()):
self.model.realizePosition(self.stateTrajectory()[i])
if i == 0:
muscleNames = []
for m in range(self.forceSet.getSize()):
c_force_elt = self.forceSet.get(m)
if 'Muscle' in c_force_elt.getConcreteClassName():
muscleName = c_force_elt.getName()
cObj = opensim.Muscle.safeDownCast(c_force_elt)
if i == 0:
muscleNames.append(c_force_elt.getName())
for c, coord in enumerate(self.coordinates):
# We use prior knowledge to improve computation speed;
# We do not want to compute moment arms that are not
# relevant, eg for a muscle of the left side with
# respect to a coordinate of the right side.
if muscleName[-2:] == '_l' and coord[-2:] == '_r':
dM[i, m, c] = 0
elif muscleName[-2:] == '_r' and coord[-2:] == '_l':
dM[i, m, c] = 0
elif (coord in self.rootCoordinates or
coord in self.lumbarCoordinates or
coord in self.armCoordinates):
dM[i, m, c] = 0
else:
coordinate = self.coordinateSet.get(
self.coordinates.index(coord))
dM[i, m, c] = cObj.computeMomentArm(
self.stateTrajectory()[i], coordinate)
# Clean numerical artefacts (ie, moment arms smaller than 1e-5 m).
dM[np.abs(dM) < 1e-5] = 0
# Filter.
if lowpass_cutoff_frequency > 0:
for c, coord in enumerate(self.coordinates):
dM[:, :, c] = lowPassFilter(self.time, dM[:, :, c],
lowpass_cutoff_frequency)
# Return as DataFrame.
moment_arms = {}
for c, coord in enumerate(self.coordinates):
data = np.concatenate(
(np.expand_dims(self.time, axis=1), dM[:,:,c]), axis=1)
columns = ['time'] + muscleNames
moment_arms[coord] = pd.DataFrame(data=data, columns=columns)
return moment_arms
def compute_center_of_mass(self):
# Compute center of mass position and velocity.
self.com_values = np.zeros((self.table.getNumRows(),3))
self.com_speeds = np.zeros((self.table.getNumRows(),3))
for i in range(self.table.getNumRows()):
self.model.realizeVelocity(self.stateTrajectory()[i])
self.com_values[i,:] = self.model.calcMassCenterPosition(
self.stateTrajectory()[i]).to_numpy()
self.com_speeds[i,:] = self.model.calcMassCenterVelocity(
self.stateTrajectory()[i]).to_numpy()
def get_center_of_mass_values(self, lowpass_cutoff_frequency=-1):
self.compute_center_of_mass()
com_v = self.com_values
# Filter.
if lowpass_cutoff_frequency > 0:
com_v = lowPassFilter(self.time, com_v, lowpass_cutoff_frequency)
# Return as DataFrame.
data = np.concatenate(
(np.expand_dims(self.time, axis=1), com_v), axis=1)
columns = ['time'] + ['x','y','z']
com_values = pd.DataFrame(data=data, columns=columns)
return com_values
def get_center_of_mass_speeds(self, lowpass_cutoff_frequency=-1):
self.compute_center_of_mass()
com_s = self.com_speeds
# Filter.
if lowpass_cutoff_frequency > 0:
com_s = lowPassFilter(self.time, com_s, lowpass_cutoff_frequency)
# Return as DataFrame.
data = np.concatenate(
(np.expand_dims(self.time, axis=1), com_s), axis=1)
columns = ['time'] + ['x','y','z']
com_speeds = pd.DataFrame(data=data, columns=columns)
return com_speeds
def get_center_of_mass_accelerations(self, lowpass_cutoff_frequency=-1):
self.compute_center_of_mass()
com_s = self.com_speeds
# Accelerations are first time derivative of speeds.
com_a = np.zeros((com_s.shape))
for i in range(com_s.shape[1]):
spline = interpolate.InterpolatedUnivariateSpline(
self.time, com_s[:,i], k=3)
splineD1 = spline.derivative(n=1)
com_a[:,i] = splineD1(self.time)
# Filter.
if lowpass_cutoff_frequency > 0:
com_a = lowPassFilter(self.time, com_a, lowpass_cutoff_frequency)
# Return as DataFrame.
data = np.concatenate(
(np.expand_dims(self.time, axis=1), com_a), axis=1)
columns = ['time'] + ['x','y','z']
com_accelerations = pd.DataFrame(data=data, columns=columns)
return com_accelerations
def get_body_angular_velocity(self, body_names=None, lowpass_cutoff_frequency=-1,
expressed_in='body'):
body_set = self.model.getBodySet()
if body_names is None:
body_names = []
for i in range(body_set.getSize()):
print(i)
body = body_set.get(i)
body_names.append(body.getName())
bodies = [body_set.get(body_name) for body_name in body_names]
ground = self.model.getGround()
angular_velocity = np.ndarray((self.table.getNumRows(),
len(body_names)*3)) # time x bodies x dim
for i_time in range(self.table.getNumRows()): # loop over time
state = self.stateTrajectory()[i_time]
self.model.realizeVelocity(state)
for i_body,body in enumerate(bodies):
ang_vel_in_ground = body.getAngularVelocityInGround(state)
if expressed_in == 'body':
angular_velocity[i_time, i_body*3:i_body*3+3] = ground.expressVectorInAnotherFrame(
state, ang_vel_in_ground, body
).to_numpy()
elif expressed_in == 'ground':
angular_velocity[i_time, i_body*3:i_body*3+3] = ang_vel_in_ground.to_numpy()
else:
raise Exception (expressed_in + ' is not a valid frame to express angular' +
' velocity.')
angular_velocity_filtered = lowPassFilter(self.time, angular_velocity, lowpass_cutoff_frequency)
# Put into a dataframe
data = np.concatenate((np.expand_dims(self.time, axis=1), angular_velocity_filtered), axis=1)
columns = ['time']
for i, body_name in enumerate(body_names):
columns += [f'{body_name}_x', f'{body_name}_y', f'{body_name}_z']
angular_velocity_df = pd.DataFrame(data=data, columns=columns)
return angular_velocity_df
def get_ranges_of_motion(self, in_degrees=True, lowpass_cutoff_frequency=-1):
self.get_coordinate_values(
in_degrees=in_degrees,
lowpass_cutoff_frequency=lowpass_cutoff_frequency)
# Compute ranges of motion.
ROM = {}
for c, coord in enumerate(self.coordinates):
ROM[coord] = {}
ROM[coord]['min'] = self.coordinate_values[coord].min()
ROM[coord]['max'] = self.coordinate_values[coord].max()
ROM[coord]['amplitude'] = (
self.coordinate_values[coord].max() -
self.coordinate_values[coord].min())
return ROM