Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Model hyperparameter tuning #933

Open
therealnb opened this issue Feb 5, 2025 · 1 comment
Open

Model hyperparameter tuning #933

therealnb opened this issue Feb 5, 2025 · 1 comment
Assignees

Comments

@therealnb
Copy link
Contributor

We need to explore the dimensions and learning parameters of the ANN and optimise it.

@poppysec
Copy link
Member

poppysec commented Feb 5, 2025

I've started a notebook here - nn_hyperparameters

Using Optuna optimisation with 50 trials
Best parameters found via Optuna: {'hidden_dim': 170, 'learning_rate': 0.0014823754382745518, 'epochs': 83, 'test_size': 0.200317595018103, 'random_state': 42} Best validation accuracy: 0.9928516281300459
Using the MiniLM-L6 ANN with these parameters yields:

{'true_positive': 176,
 'false_positive': 38,
 'true_negative': 81,
 'false_negative': 16,
 'total_time': 12.742049217224121,
 'mean_time': 0.041103384571690715,
 'max_time': 0.37363195419311523,
 'min_time': 0.006579160690307617,
 'count': 310}

{'sensitivity': 0.9166666666666666,
  'specificity': 0.680672268907563,
  'precision': 0.822429906542056,
  'recall': 0.9166666666666666,
  'f1_score': 0.8669950738916257}

@poppysec poppysec self-assigned this Feb 5, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

3 participants