-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_classifer.py
289 lines (255 loc) · 8.78 KB
/
train_classifer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import argparse
import datetime
import os
import random
import time
import warnings
from pathlib import Path
import numpy
import torch
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader, DistributedSampler
from crowd_datasets import build_dataset
from engine import *
from models import build_classifier, build_model
warnings.filterwarnings("ignore")
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1]))
def get_args_parser():
parser = argparse.ArgumentParser(
"Set parameters for training classifier", add_help=False
)
parser.add_argument("--lr", default=1e-4, type=float)
parser.add_argument("--lr_backbone", default=1e-5, type=float)
parser.add_argument("--batch_size", default=8, type=int)
parser.add_argument("--weight_decay", default=1e-4, type=float)
parser.add_argument("--epochs", default=3500, type=int)
parser.add_argument("--lr_drop", default=3500, type=int)
parser.add_argument(
"--clip_max_norm", default=0.1, type=float, help="gradient clipping max norm"
)
# Model parameters
parser.add_argument(
"--frozen_weights",
type=str,
default=None,
help="Path to the pretrained model. If set, only the mask head will be trained",
)
parser.add_argument("--pre_weights", type=str)
parser.add_argument(
"--point_weights", type=str, help="Path to pretrained P2PNet for regression"
)
# * Backbone
parser.add_argument(
"--backbone",
default="vgg16_bn",
type=str,
help="Name of the convolutional backbone to use",
)
parser.add_argument(
"--num_classes", default=1, type=int, help="number of non NONE type classes"
)
parser.add_argument(
"--downstream_num_classes",
default=2,
type=int,
help="number of classes for downstream fine grained classification",
)
# * Loss coefficients
parser.add_argument("--point_loss_coef", default=0.0002, type=float)
parser.add_argument(
"--row", default=3, type=int, help="row number of anchor points"
)
parser.add_argument(
"--line", default=3, type=int, help="line number of anchor points"
)
# * Matcher
parser.add_argument(
"--set_cost_class",
default=1,
type=float,
help="Class coefficient in the matching cost",
)
parser.add_argument(
"--set_cost_point",
default=0.05,
type=float,
help="L1 point coefficient in the matching cost",
)
parser.add_argument(
"--eos_coef",
default=0.5,
type=float,
help="relative classification weight of no-subject class",
)
parser.add_argument(
"--ce_coef",
nargs="+",
type=float,
help="weighted ce coefficients of fine-grained classes",
)
# dataset parameters
parser.add_argument("--dataset_file", default="SHHA")
parser.add_argument(
"--data_root",
default="./new_public_density_data",
help="path where the dataset is",
)
parser.add_argument(
"--expname",
type=str,
help="""folder name under which model weights, tb logs,
and any visualiztions will go in the ./results
folder""",
)
parser.add_argument(
"--output_dir",
default="./results",
help="path where to save, empty for no saving",
)
parser.add_argument(
"--multiclass", action="store_true", help="enable multiclass framework"
)
parser.add_argument("--hsv", action="store_true", help="enable hsv framework")
parser.add_argument("--seed", default=42, type=int)
parser.add_argument("--resume", default="", help="resume from checkpoint")
parser.add_argument(
"--start_epoch", default=0, type=int, metavar="N", help="start epoch"
)
parser.add_argument("--eval", action="store_true")
parser.add_argument("--num_workers", default=8, type=int)
parser.add_argument(
"--eval_freq",
default=5,
type=int,
help="frequency of evaluation, default setting is evaluating in every 5 epoch",
)
parser.add_argument(
"--gpu_id", default=0, type=int, help="the gpu used for training"
)
return parser
def make_dir(path: str):
if os.path.exists(path) == False:
os.mkdir(path)
def main(args):
print(args)
### Housekeeping
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# specify device
device = torch.device("cuda")
### RESULT SAVING
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(args.gpu_id)
# create folder for result saving
result_path = os.path.join(args.output_dir, args.expname)
make_dir(result_path)
tb_path = os.path.join(result_path, "logs")
weight_path = os.path.join(result_path, "weights")
make_dir(tb_path)
make_dir(weight_path)
# make an extra directory meant for visualizations
vis_path = os.path.join(result_path, "viz")
make_dir(vis_path)
# create the logging file
run_log_name = os.path.join(result_path, "run_log.txt")
with open(run_log_name, "w") as log_file:
log_file.write("Eval Log %s\n" % time.strftime("%c"))
### LOAD P2P Model
regr_model = build_model(args, training=False)
# load the trained network
checkpoint = torch.load(args.point_weights, map_location="cpu")
regr_model.load_state_dict(checkpoint["model"])
regr_model.to(device)
### BUILD CLASSIFIER
model, criterion = build_classifier(args, training=True)
model.to(device)
criterion.to(device)
model_without_ddp = model
### BUILD DATASET
# create the dataset
loading_data = build_dataset(args)
# create the training and valiation set
train_set, val_set = loading_data(args.data_root, args.multiclass, args.hsv)
# create the sampler used during training
sampler_train = torch.utils.data.RandomSampler(train_set)
sampler_val = torch.utils.data.SequentialSampler(val_set)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True
)
# the dataloader for training
data_loader_train = DataLoader(
train_set,
batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn_crowd,
num_workers=args.num_workers,
)
data_loader_val = DataLoader(
val_set,
1,
sampler=sampler_val,
drop_last=False,
collate_fn=utils.collate_fn_crowd,
num_workers=args.num_workers,
)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("number of params:", n_parameters)
# use different optimation params for different parts of the model
param_dicts = [
{
"params": [
p
for n, p in model_without_ddp.named_parameters()
if "backbone" not in n and p.requires_grad
]
},
{
"params": [
p
for n, p in model_without_ddp.named_parameters()
if "backbone" in n and p.requires_grad
],
"lr": args.lr_backbone,
},
]
### TRAINING PARAMS
# Adam is used by default
optimizer = torch.optim.Adam(param_dicts, lr=args.lr)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
print("Start Training")
start_time = time.time()
writer = SummaryWriter(tb_path)
step = 0
# training loop
for epoch in range(args.epochs):
t1 = time.time()
stat = train_one_epoch_classifier(
regr_model, model, criterion, data_loader_train, optimizer, device, epoch
)
print(f"Avg Loss: loss_ce: {stat['loss_ce']}")
if writer is not None:
writer.add_scalar("loss/loss_ce", stat["loss_ce"], epoch)
t2 = time.time()
print(
"[ep %d][lr %.7f][%.2fs]"
% (epoch, optimizer.param_groups[0]["lr"], t2 - t1)
)
lr_scheduler.step()
checkpoint_latest_path = os.path.join(weight_path, "latest.pth")
torch.save({"model": model_without_ddp.state_dict()}, checkpoint_latest_path)
# total time for training
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("Training time {}".format(total_time_str))
if __name__ == "__main__":
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
parser = argparse.ArgumentParser(
"Point Proposal Classifier training and evaluation script",
parents=[get_args_parser()],
)
args = parser.parse_args()
main(args)