-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
587 lines (520 loc) · 17.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
import argparse
import datetime
import os
import random
import time
import warnings
from pathlib import Path
import numpy
import torch
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader, DistributedSampler
from torchinfo import summary
from crowd_datasets import build_dataset
from engine import *
from models import build_model
warnings.filterwarnings("ignore")
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1]))
def get_args_parser():
parser = argparse.ArgumentParser(
"Set parameters for training P2PNet", add_help=False
)
parser.add_argument("--lr", default=1e-4, type=float)
parser.add_argument("--lr_backbone", default=1e-5, type=float)
parser.add_argument("--batch_size", default=8, type=int)
parser.add_argument("--weight_decay", default=1e-4, type=float)
parser.add_argument("--epochs", default=3500, type=int)
parser.add_argument("--lr_drop", default=3500, type=int)
parser.add_argument(
"--clip_max_norm", default=0.1, type=float, help="gradient clipping max norm"
)
# Model parameters
parser.add_argument(
"--frozen_weights",
type=str,
default=None,
help="Path to the pretrained model. If set, only the mask head will be trained",
)
parser.add_argument(
"--pre_weights",
type=str,
default=None,
)
# * Backbone
parser.add_argument(
"--backbone",
default="vgg16_bn",
type=str,
help="Name of the convolutional backbone to use",
)
parser.add_argument(
"--num_classes", default=1, type=int, help="number of non NONE type classes"
)
# * Matcher
parser.add_argument(
"--set_cost_class",
default=1,
type=float,
help="Class coefficient in the matching cost",
)
parser.add_argument(
"--set_cost_point",
default=0.05,
type=float,
help="L1 point coefficient in the matching cot",
)
parser.add_argument(
"--loss",
nargs="+",
type=str,
help="specify which terms to include in the loss",
default=["labels", "points"],
choices=["labels", "points", "density", "count", "distance"],
)
# * Loss coefficients (guide training scheme)
parser.add_argument("--point_loss_coef", default=0.0002, type=float)
parser.add_argument(
"--dense_loss_coef",
default=1,
type=float,
help="loss weight of dense estimation loss",
)
parser.add_argument(
"--count_loss_coef",
default=1,
type=float,
help="loss weight of count estimation loss",
)
parser.add_argument(
"--distance_loss_coef",
default=1,
type=float,
help="loss weight of distance regulation term",
)
parser.add_argument(
"--eos_coef",
default=0.5,
type=float,
help="Relative classification weight of the no-object class",
)
parser.add_argument(
"--ce_coef",
nargs="+",
type=float,
help="Classification weights of each object class, n # of args for n # of classes",
)
parser.add_argument(
"--map_res",
default=4,
type=int,
help="resoltion down sampling factor (each axis), total downsample will be map_res^2",
)
parser.add_argument(
"--gauss_kernel_res",
default=9,
type=int,
help="kernel size for generating heatmaps",
)
parser.add_argument(
"--row", default=3, type=int, help="row number of anchor points"
)
parser.add_argument(
"--line", default=3, type=int, help="line number of anchor points"
)
# dataset parameters
parser.add_argument("--dataset_file", default="SHHA")
parser.add_argument(
"--data_root",
default="./new_public_density_data",
help="path where the dataset is",
)
parser.add_argument(
"--expname",
type=str,
help="""folder name under which model weights, tb logs,
and any visualiztions will go in the ./results
folder""",
)
parser.add_argument(
"--output_dir",
default="./results",
help="path where to save, empty for no saving",
)
parser.add_argument(
"--multiclass",
nargs="+",
type=str,
help="name of the classes",
)
parser.add_argument(
"--class_filter",
type=str,
default=None,
help="train on only the specified class index",
)
parser.add_argument(
"--hsv",
action="store_true",
help="use HSV channels during training",
)
parser.add_argument(
"--hse", action="store_true", help="use HSE channels during training"
)
parser.add_argument(
"--edges", action="store_true", help="use Canny edge output during training"
)
parser.add_argument("--seed", default=42, type=int)
parser.add_argument(
"--resume", type=str, default=None, help="resume from checkpoint"
)
parser.add_argument(
"--start_epoch", default=0, type=int, metavar="N", help="start epoch"
)
parser.add_argument(
"--pointmatch",
action="store_true",
help="only use point distance as the hungarian alg metric"
)
parser.add_argument(
"--noreg",
action="store_true",
help="set regression branch to zero, so that ground truth points are not offset,\
used for debugging pruposes",
)
parser.add_argument("--eval", action="store_true")
parser.add_argument("--num_workers", default=8, type=int)
parser.add_argument(
"--eval_freq",
default=5,
type=int,
help="frequency of evaluation, default setting is evaluating in every 5 epoch",
)
parser.add_argument(
"--gpu_id", default=0, type=int, help="the gpu used for training"
)
return parser
def make_dir(path: str):
if os.path.exists(path) == False:
os.mkdir(path)
def main(args):
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(args.gpu_id)
# create folder for result saving
result_path = os.path.join(args.output_dir, args.expname)
make_dir(result_path)
tb_path = os.path.join(result_path, "logs")
weight_path = os.path.join(result_path, "weights")
make_dir(tb_path)
make_dir(weight_path)
print(args.ce_coef)
# make an extra directory meant for visualizations
vis_path = os.path.join(result_path, "viz")
make_dir(vis_path)
# create the logging file
run_log_name = os.path.join(result_path, "run_log.txt")
with open(run_log_name, "w") as log_file:
log_file.write("Eval Log %s\n" % time.strftime("%c"))
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only"
# backup the arguments
print(args)
with open(run_log_name, "a") as log_file:
log_file.write("{}".format(args))
device = torch.device("cuda")
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# get the P2PNet model
model, criterion = build_model(args, training=True)
# send model and criterion to GPU
model.to(device)
criterion.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("number of params:", n_parameters)
# use different optimation params for different parts of the model
param_dicts = [
{
"params": [
p
for n, p in model_without_ddp.named_parameters()
if "backbone" not in n and p.requires_grad
]
},
{
"params": [
p
for n, p in model_without_ddp.named_parameters()
if "backbone" in n and p.requires_grad
],
"lr": args.lr_backbone,
},
]
# Adam is used by default
optimizer = torch.optim.Adam(param_dicts, lr=args.lr)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
# resume the weights and training state if exists
if args.resume is not None:
print("using RESUME")
checkpoint = torch.load(args.resume, map_location="cpu")
model.load_state_dict(checkpoint["model"])
if (
not args.eval
and "optimizer" in checkpoint
and "lr_scheduler" in checkpoint
and "epoch" in checkpoint
):
optimizer.load_state_dict(checkpoint["optimizer"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
args.start_epoch = checkpoint["epoch"] + 1
# create the dataset
loading_data = build_dataset(args=args)
# create the training and valiation set
print(f"Multiclass: {args.multiclass}")
print(f"HSV: {args.hsv}")
print(f"HSE: {args.hse}")
print(f"Edges: {args.edges}")
train_set, val_set = loading_data(
args.data_root,
multiclass=args.multiclass,
class_filter=args.class_filter,
hsv=args.hsv,
hse=args.hse,
edges=args.edges,
patch=True,
)
train_set_stats, val_set_stats = loading_data(
args.data_root,
multiclass=args.multiclass,
class_filter=args.class_filter,
hsv=args.hsv,
hse=args.hse,
edges=args.edges,
patch=False,
)
# create the sampler used during training
sampler_train = torch.utils.data.RandomSampler(train_set)
sampler_val = torch.utils.data.SequentialSampler(val_set)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True
)
# the dataloader for training
data_loader_train = DataLoader(
train_set,
batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn_crowd,
num_workers=args.num_workers,
)
# get count stats
# data_loader_train_stats = DataLoader(
# train_set_stats,
# batch_size=1)
# count = []
# train_iter = iter(data_loader_train_stats)
# for i, classtype in enumerate(args.multiclass):
# class_count = []
# for batch in range(len(data_loader_train_stats)):
# try:
# sample, target = next(train_iter)
# except: pass
# for x in target:
# truth = (x["labels"] == i+1)
# class_count.append(torch.sum(truth.int()).item())
# count.append(sum(class_count))
# print(count)
data_loader_val = DataLoader(
val_set,
1,
sampler=sampler_val,
drop_last=False,
collate_fn=utils.collate_fn_crowd,
num_workers=args.num_workers,
)
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location="cpu")
model_without_ddp.detr.load_state_dict(checkpoint["model"])
if args.resume is not None:
print("RESUME CHECKPOINT --> initial eval")
t1 = time.time()
result = evaluate_crowd_no_overlap(model, data_loader_val, device)
t2 = time.time()
# print the evaluation results
print(
"=======================================test======================================="
)
print(
"mae:",
result[0],
"mse:",
result[1],
"time:",
t2 - t1,
)
print(
"=======================================test======================================="
)
if args.noreg:
for params in model.regression.parameters():
params.requires_grad = False
model.regression.eval()
print(summary(model, input_size=(4, 3, 512, 512)))
print("Start training")
start_time = time.time()
# save the performance during the training
mae = []
mse = []
loss = []
min_loss = 100.0
# the logger writer
writer = SummaryWriter(tb_path)
step = 0
# training starts here
for epoch in range(args.start_epoch, args.epochs):
t1 = time.time()
stat, class_stat = train_one_epoch(
model,
criterion,
data_loader_train,
optimizer,
device,
epoch,
args.clip_max_norm,
)
loss.append(stat["loss"])
# record the training states after every epoch
if writer is not None:
with open(run_log_name, "a") as log_file:
log_file.write("loss/loss@{}: {}".format(epoch, stat["loss"]))
log_file.write("loss/loss_ce@{}: {}".format(epoch, stat["loss_ce"]))
log_file.write(
"loss/loss_point@{}: {}".format(epoch, stat["loss_point"])
)
writer.add_scalar("loss/loss", stat["loss"], epoch)
writer.add_scalar("loss/loss_ce", stat["loss_ce"], epoch)
writer.add_scalar("loss/loss_point", stat["loss_point"], epoch)
if len(args.loss) > 2:
writer.add_scalar("loss/loss_dense", stat["loss_dense"], epoch)
t2 = time.time()
print(
"[ep %d][lr %.7f][%.2fs]"
% (epoch, optimizer.param_groups[0]["lr"], t2 - t1)
)
with open(run_log_name, "a") as log_file:
log_file.write(
"[ep %d][lr %.7f][%.2fs]"
% (epoch, optimizer.param_groups[0]["lr"], t2 - t1)
)
# change lr according to the scheduler
lr_scheduler.step()
# save latest weights every epoch
checkpoint_latest_path = os.path.join(weight_path, "latest.pth")
torch.save(
{
"model": model_without_ddp.state_dict(),
},
checkpoint_latest_path,
)
# save model with the lowest training loss
if min_loss > stat["loss"]:
checkpoint_best_path = os.path.join(weight_path, "best_training_loss.pth")
torch.save(
{
"model": model_without_ddp.state_dict(),
},
checkpoint_best_path,
)
# update min loss
min_loss = np.min(loss)
# run classwise loss evaluation
avg_class = avg_class_loss(class_stat, writer, epoch)
print(
f"Avg Classwise loss: loss_ce: {avg_class[0]} loss_point: {avg_class[1]}"
)
# run evaluation
if epoch % args.eval_freq == 0 and epoch != 0:
t1 = time.time()
result = evaluate_crowd_no_overlap(
model,
data_loader_val,
device,
num_classes=args.num_classes,
multiclass=(True if len(args.multiclass) > 1 else False),
)
t2 = time.time()
mae.append(result[0])
mse.append(result[1])
# print the evaluation results
print(
"=======================================test======================================="
)
print(
"mae:",
result[0],
"mse:",
result[1],
"time:",
t2 - t1,
"best mae:",
np.min(mae),
)
with open(run_log_name, "a") as log_file:
log_file.write(
"mae:{}, mse:{}, time:{}, best mae:{}".format(
result[0], result[1], t2 - t1, np.min(mae)
)
)
print(
"=======================================test======================================="
)
# recored the evaluation results
if writer is not None:
with open(run_log_name, "a") as log_file:
log_file.write("metric/mae@{}: {}".format(step, result[0]))
log_file.write("metric/mse@{}: {}".format(step, result[1]))
writer.add_scalar("metric/mae", result[0], step)
writer.add_scalar("metric/mse", result[1], step)
step += 1
# save the best model with best average count error
if abs(np.min(mae) - result[0]) < 0.01:
checkpoint_best_path = os.path.join(weight_path, "best_mae.pth")
torch.save(
{
"model": model_without_ddp.state_dict(),
},
checkpoint_best_path,
)
# total time for training
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("Training time {}".format(total_time_str))
def avg_class_loss(loss, writer, epoch):
ce_losses = []
point_losses = []
for entry in loss:
# calculate avg ce loss
ce_list = entry["class_loss_ce"]
ce_list = [i.item() for i in ce_list]
ce_losses.append(ce_list)
# calculate point losses
point_list = entry["class_loss_point"]
point_list = [i.item() for i in point_list]
point_losses.append(point_list)
ce_losses, point_losses = numpy.array(ce_losses), numpy.array(point_losses)
ce_losses, point_losses = ce_losses.transpose(), point_losses.transpose()
ce_mean = numpy.nanmean(ce_losses, axis=1)
point_mean = numpy.nanmean(point_losses, axis=1)
ce_mean, point_mean = ce_mean.tolist(), point_mean.tolist()
for i, mean in enumerate(ce_mean):
writer.add_scalar(f"metric/class{i}_loss_ce", mean, epoch)
for i, mean in enumerate(point_mean):
writer.add_scalar(f"metric/class{i}_loss_point", mean, epoch)
return ce_mean, point_mean
if __name__ == "__main__":
parser = argparse.ArgumentParser(
"P2PNet training and evaluation script", parents=[get_args_parser()]
)
args = parser.parse_args()
main(args)