-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfidence_test.py
131 lines (109 loc) · 3.7 KB
/
confidence_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import argparse
import datetime
import os
import random
import time
import warnings
from pathlib import Path
import cv2
import numpy as np
import torch
import torchvision.transforms as standard_transforms
from PIL import Image
from crowd_datasets import build_dataset
from engine import *
from models import build_model
warnings.filterwarnings("ignore")
def get_args_parser():
parser = argparse.ArgumentParser(
"Set parameters for P2PNet evaluation", add_help=False
)
# * Backbone
parser.add_argument(
"--backbone",
default="vgg16_bn",
type=str,
help="name of the convolutional backbone to use",
)
parser.add_argument(
"--row", default=2, type=int, help="row number of anchor points"
)
parser.add_argument(
"--line", default=2, type=int, help="line number of anchor points"
)
parser.add_argument("--output_dir", default="", help="path where to save")
parser.add_argument(
"--weight_path", default="", help="path where the trained weights saved"
)
parser.add_argument(
"--gpu_id", default=0, type=int, help="the gpu used for evaluation"
)
return parser
def main(args, debug=False):
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(args.gpu_id)
print(args)
device = torch.device("cuda")
# get the P2PNet
model = build_model(args)
# move to GPU
model.to(device)
# load trained model
if args.weight_path is not None:
checkpoint = torch.load(args.weight_path, map_location="cpu")
model.load_state_dict(checkpoint["model"])
# convert to eval mode
model.eval()
# create the pre-processing transform
transform = standard_transforms.Compose(
[
standard_transforms.ToTensor(),
standard_transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
# set your image path here
img_path = "./dataroot/worm_dataset/test/images/IMG_24.png"
# load the images
img_raw = Image.open(img_path).convert("RGB")
# round the size
width, height = img_raw.size
new_width = width // 128 * 128
new_height = height // 128 * 128
img_raw = img_raw.resize((new_width, new_height), Image.LANCZOS)
# pre-proccessing
img = transform(img_raw)
samples = torch.Tensor(img).unsqueeze(0)
samples = samples.to(device)
# run inference
outputs = model(samples)
print(outputs["pred_logits"])
print(outputs["pred_logits"].size())
outputs_scores = torch.nn.functional.softmax(outputs["pred_logits"], -1)[:, :, 1][0]
outputs_points = outputs["pred_points"][0]
print("\nFinal")
print(outputs_scores)
print(torch.max(outputs_scores))
threshold = 0.5
# filter the predictions
points = outputs_points[outputs_scores > threshold].detach().cpu().numpy().tolist()
print("number of points within threshold", len(points))
predict_cnt = int((outputs_scores > threshold).sum())
outputs_points = outputs["pred_points"][0]
# draw the predictions
size = 5
img_to_draw = cv2.cvtColor(np.array(img_raw), cv2.COLOR_RGB2BGR)
for p in points:
img_to_draw = cv2.circle(
img_to_draw, (int(p[0]), int(p[1])), size, (0, 0, 255), -1
)
# save the visualized image
cv2.imwrite(
os.path.join(args.output_dir, "pred{}.jpg".format(predict_cnt)), img_to_draw
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
"P2PNet evaluation script", parents=[get_args_parser()]
)
args = parser.parse_args()
main(args)