Skip to content

Commit

Permalink
Merge pull request #133 from sovrasov/aten_backend
Browse files Browse the repository at this point in the history
Aten backend
  • Loading branch information
sovrasov authored May 3, 2024
2 parents c2e1af7 + 81ace22 commit 7a2a141
Show file tree
Hide file tree
Showing 9 changed files with 367 additions and 51 deletions.
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,8 @@
# ptflops versions log

## v 0.7.3
- Add aten backend to collect the amount of flops on aten level.

## v 0.7.2.2
- Switch from setup.py to pyproject

Expand Down
89 changes: 57 additions & 32 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,26 @@
[![Pypi version](https://img.shields.io/pypi/v/ptflops.svg)](https://pypi.org/project/ptflops/)
[![Build Status](https://travis-ci.com/sovrasov/flops-counter.pytorch.svg?branch=master)](https://travis-ci.com/sovrasov/flops-counter.pytorch)

This script is designed to compute the theoretical amount of multiply-add operations
in convolutional neural networks. It can also compute the number of parameters and
This tool is designed to compute the theoretical amount of multiply-add operations
in neural networks. It can also compute the number of parameters and
print per-layer computational cost of a given network.

Supported layers:
`ptflops` has two backends, `pytorch` and `aten`. `pytorch` backend is a legacy one, it considers `nn.Modules` only. However,
it's still useful, since it provides a better par-layer analytics for CNNs. In all other cases it's recommended to use
`aten` backend, which considers aten operations, and therefore it covers more model architectures (including transformers).

## `aten` backend
### Operations considered:
- aten.mm, aten.matmul, aten.addmm, aten.bmm
- aten.convolution

### Usage tips
- Use `verbose=True` to see the operations which were not considered during complexity computation.
- This backend prints per-module statistics only for modules directly nested into the root `nn.Module`.
Deeper modules at the second level of nesting are not shown in the per-layer statistics.

## `pytorch` backend
### Supported layers:
- Conv1d/2d/3d (including grouping)
- ConvTranspose1d/2d/3d (including grouping)
- BatchNorm1d/2d/3d, GroupNorm, InstanceNorm1d/2d/3d, LayerNorm
Expand All @@ -22,20 +37,20 @@ Experimental support:
- torchvision.ops.DeformConv2d
- visual transformers from [timm](https://github.com/huggingface/pytorch-image-models)

Requirements: Pytorch >= 1.1, torchvision >= 0.3

Thanks to @warmspringwinds for the initial version of script.

## Usage tips
### Usage tips

- This tool doesn't take into account some of the `torch.nn.functional.*` and `tensor.*` operations. Therefore unsupported operations are
- This backend doesn't take into account some of the `torch.nn.functional.*` and `tensor.*` operations. Therefore unsupported operations are
not contributing to the final complexity estimation. See `ptflops/pytorch_ops.py:FUNCTIONAL_MAPPING,TENSOR_OPS_MAPPING` to check supported ops.
- `ptflops` launches a given model on a random tensor and estimates amount of computations during inference. Complicated models can have several inputs, some of them could be optional. To construct non-trivial input one can use the `input_constructor` argument of the `get_model_complexity_info`. `input_constructor` is a function that takes the input spatial resolution as a tuple and returns a dict with named input arguments of the model. Next this dict would be passed to the model as a keyword arguments.
- `verbose` parameter allows to get information about modules that don't contribute to the final numbers.
- `ignore_modules` option forces `ptflops` to ignore the listed modules. This can be useful
for research purposes. For instance, one can drop all convolutions from the counting process
specifying `ignore_modules=[torch.nn.Conv2d]`.

Requirements: Pytorch >= 1.1, torchvision >= 0.3

Thanks to @warmspringwinds and Horace He for the initial version of the script.

## Install the latest version
From PyPI:
```bash
Expand All @@ -55,7 +70,12 @@ from ptflops import get_model_complexity_info

with torch.cuda.device(0):
net = models.densenet161()
macs, params = get_model_complexity_info(net, (3, 224, 224), as_strings=True,
macs, params = get_model_complexity_info(net, (3, 224, 224), as_strings=True, backend='pytorch'
print_per_layer_stat=True, verbose=True)
print('{:<30} {:<8}'.format('Computational complexity: ', macs))
print('{:<30} {:<8}'.format('Number of parameters: ', params))

macs, params = get_model_complexity_info(net, (3, 224, 224), as_strings=True, backend='aten'
print_per_layer_stat=True, verbose=True)
print('{:<30} {:<8}'.format('Computational complexity: ', macs))
print('{:<30} {:<8}'.format('Number of parameters: ', params))
Expand All @@ -67,7 +87,7 @@ If ptflops was useful for your paper or tech report, please cite me:
@online{ptflops,
author = {Vladislav Sovrasov},
title = {ptflops: a flops counting tool for neural networks in pytorch framework},
year = 2018-2023,
year = 2018-2024,
url = {https://github.com/sovrasov/flops-counter.pytorch},
}
```
Expand All @@ -76,25 +96,30 @@ If ptflops was useful for your paper or tech report, please cite me:

### [torchvision](https://pytorch.org/vision/0.16/models.html)

Model | Input Resolution | Params(M) | MACs(G) (`pytorch`) | MACs(G) (`aten`)
--- |--- |--- |--- |---
alexnet | 224x224 | 61.10 | 0.72 | 0.71
convnext_base | 224x224 | 88.59 | 15.43 | 15.38
densenet121 | 224x224 | 7.98 | 2.90 |
efficientnet_b0 | 224x224 | 5.29 | 0.41 |
efficientnet_v2_m | 224x224 | 54.14 | 5.43 |
googlenet | 224x224 | 13.00 | 1.51 |
inception_v3 | 224x224 | 27.16 | 5.75 | 5.71
maxvit_t | 224x224 | 30.92 | 5.48 |
mnasnet1_0 | 224x224 | 4.38 | 0.33 |
mobilenet_v2 | 224x224 | 3.50 | 0.32 |
mobilenet_v3_large | 224x224 | 5.48 | 0.23 |
regnet_y_1_6gf | 224x224 | 11.20 | 1.65 |
resnet18 | 224x224 | 11.69 | 1.83 | 1.81
resnet50 | 224x224 | 25.56 | 4.13 | 4.09
resnext50_32x4d | 224x224 | 25.03 | 4.29 |
shufflenet_v2_x1_0 | 224x224 | 2.28 | 0.15 |
squeezenet1_0 | 224x224 | 1.25 | 0.84 | 0.82
vgg16 | 224x224 | 138.36 | 15.52 | 15.48
vit_b_16 | 224x224 | 86.57 | 17.61 (wrong) | 16.86
wide_resnet50_2 | 224x224 | 68.88 | 11.45 |


### [timm](https://github.com/huggingface/pytorch-image-models)

Model | Input Resolution | Params(M) | MACs(G)
--- |--- |--- |---
alexnet | 224x224 | 61.10 | 0.72
convnext_base | 224x224 | 88.59 | 15.43
densenet121 | 224x224 | 7.98 | 2.90
efficientnet_b0 | 224x224 | 5.29 | 0.41
efficientnet_v2_m | 224x224 | 54.14 | 5.43
googlenet | 224x224 | 13.00 | 1.51
inception_v3 | 224x224 | 27.16 | 2.86
maxvit_t | 224x224 | 30.92 | 5.48
mnasnet1_0 | 224x224 | 4.38 | 0.33
mobilenet_v2 | 224x224 | 3.50 | 0.32
mobilenet_v3_large | 224x224 | 5.48 | 0.23
regnet_y_1_6gf | 224x224 | 11.20 | 1.65
resnet18 | 224x224 | 11.69 | 1.83
resnet50 | 224x224 | 25.56 | 4.13
resnext50_32x4d | 224x224 | 25.03 | 4.29
shufflenet_v2_x1_0 | 224x224 | 2.28 | 0.15
squeezenet1_0 | 224x224 | 1.25 | 0.84
vgg16 | 224x224 | 138.36 | 15.52
vit_b_16 | 224x224 | 86.57 | 17.60
wide_resnet50_2 | 224x224 | 68.88 | 11.45
5 changes: 3 additions & 2 deletions ptflops/__init__.py
Original file line number Diff line number Diff line change
@@ -1,17 +1,18 @@
'''
Copyright (C) 2019-2023 Sovrasov V. - All Rights Reserved
Copyright (C) 2019-2024 Sovrasov V. - All Rights Reserved
* You may use, distribute and modify this code under the
* terms of the MIT license.
* You should have received a copy of the MIT license with
* this file. If not visit https://opensource.org/licenses/MIT
'''


from .flops_counter import get_model_complexity_info
from .flops_counter import FLOPS_BACKEND, get_model_complexity_info
from .utils import flops_to_string, params_to_string

__all__ = [
"get_model_complexity_info",
"flops_to_string",
"params_to_string",
"FLOPS_BACKEND",
]
137 changes: 137 additions & 0 deletions ptflops/aten_engine.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
'''
Copyright (C) 2024 Sovrasov V. - All Rights Reserved
* You may use, distribute and modify this code under the
* terms of the MIT license.
* You should have received a copy of the MIT license with
* this file. If not visit https://opensource.org/licenses/MIT
'''


import sys
import traceback
from collections import defaultdict
from functools import partial
from typing import Optional, Tuple, Union

import torch
from torch.utils._python_dispatch import TorchDispatchMode

from ptflops.pytorch_engine import get_model_parameters_number
from ptflops.utils import flops_to_string
from .aten_ops import ATEN_OPS_MAPPING


class FlopCounterMode(TorchDispatchMode):
def __init__(self, module=None, verbose=False, print_per_layer_stat=False,
output_params=None):
self.verbose = verbose
if output_params is None:
output_params = defaultdict(dict)
self.output_params = output_params
self.print_fn = partial(print, **self.output_params['print_params'])

self.print_per_layer_stat = print_per_layer_stat
self.flop_counts = defaultdict(lambda: defaultdict(int))
self.parents = ['Global']
self._total_complexity = None
if module is not None:
for name, mod in dict(module.named_children()).items():
mod.register_forward_pre_hook(self.enter_module(name))
mod.register_forward_hook(self.exit_module(name))

@property
def complexity(self):
return self._total_complexity

def enter_module(self, name):
def f(*args):
self.parents.append(name)
return f

def exit_module(self, name):
def f(*args):
assert(self.parents[-1] == name)
self.parents.pop()
return f

def __enter__(self):
self.flop_counts.clear()
super().__enter__()

def __exit__(self, *args):
self._total_complexity = sum(self.flop_counts['Global'].values())
if self.print_per_layer_stat:
self.print_fn('Total:' +
flops_to_string(self._total_complexity,
**self.output_params['serialize_params']))
for mod in self.flop_counts.keys():
self.print_fn("Module: ", mod)
for k, v in self.flop_counts[mod].items():
self.print_fn(
f'{k}: ' +
flops_to_string(v, **self.output_params['serialize_params']))
self.print_fn()
super().__exit__(*args)

def __torch_dispatch__(self, func, types, args=(), kwargs=None):
def normalize_tuple(x):
if not isinstance(x, tuple):
return (x,)
return x
kwargs = kwargs if kwargs else {}

out = func(*args, **kwargs)
func_packet = func._overloadpacket
if func_packet in ATEN_OPS_MAPPING:
flop_count = ATEN_OPS_MAPPING[func_packet](args, normalize_tuple(out))
for par in self.parents:
self.flop_counts[par][func_packet] += flop_count
elif self.verbose:
self.print_fn(f'Warning: {func_packet} operation is treated as a zero-op')

return out


def get_flops_aten(model, input_res,
print_per_layer_stat=True,
input_constructor=None, ost=sys.stdout,
verbose=False, ignore_modules=[],
custom_modules_hooks={},
output_precision=2,
flops_units: Optional[str] = 'GMac',
param_units: Optional[str] = 'M') -> Tuple[Union[int, None],
Union[int, None]]:

params_sum = get_model_parameters_number(model)
model.eval()
output_params = {'serialize_params':
{'units': flops_units, 'precision': output_precision},
'print_params': {'file': ost}}

if input_constructor:
batch = input_constructor(input_res)
else:
try:
batch = torch.ones(()).new_empty((1, *input_res),
dtype=next(model.parameters()).dtype,
device=next(model.parameters()).device)
except StopIteration:
batch = torch.ones(()).new_empty((1, *input_res))

try:
counter = FlopCounterMode(model, verbose, print_per_layer_stat, output_params)
with counter:
if isinstance(batch, dict):
_ = model(**batch)
else:
_ = model(batch)
macs_count = counter.complexity

except Exception as e:
print("Flops estimation was not finished successfully because of"
f" the following exception:\n{type(e)} : {e}")
traceback.print_exc()

return None, None

return macs_count, params_sum
Loading

0 comments on commit 7a2a141

Please sign in to comment.