-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataset.py
31 lines (25 loc) · 824 Bytes
/
Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch
from torch.utils.data import Dataset
from PIL import Image
import numpy as np
class Dataset(Dataset):
def __init__(self, root, data, transform = None, train=True):
self.data = data
self.root = root
self.transform = transform
self.train = train
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if(torch.is_tensor(idx)):
idx = idx.tolist()
img_name = self.data.iloc[idx,0] + '.png'
img_data = np.array(Image.open(self.root + img_name))
gt = self.data.iloc[idx,-1]
gt = np.array(gt)
if(self.transform):
img_data = self.transform(img_data)
if(self.train):
return {'data':img_data, 'labels':gt}
else:
return {'data':img_data}