-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implements Traversable for Profunctors that between categories Monoid…
…al with respect to Tupling
- Loading branch information
Showing
2 changed files
with
115 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
{-# LANGUAGE DefaultSignatures #-} | ||
{-# LANGUAGE DeriveGeneric #-} | ||
{-# LANGUAGE GeneralizedNewtypeDeriving #-} | ||
{-# LANGUAGE StandaloneKindSignatures #-} | ||
|
||
module Data.Bifunctor.Traversable | ||
( Traversable (..), | ||
First (..), | ||
Second (..), | ||
) | ||
where | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
import Control.Applicative (Applicative (..)) | ||
Check warning on line 15 in src/Data/Bifunctor/Traversable.hs
|
||
import Data.Bifunctor (Bifunctor (..)) | ||
import Data.Bifunctor.Monoidal (Monoidal, Semigroupal (..), Unital (..)) | ||
import Data.Functor.Contravariant (Contravariant (..)) | ||
import Data.Kind (Constraint, Type) | ||
import Data.Profunctor (Profunctor (..)) | ||
import GHC.Generics (Generic (..), Generic1, K1 (..), M1 (..), U1 (..), type (:*:) (..)) | ||
import Prelude hiding (Traversable) | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
class Traversable hkd where | ||
sequence :: forall p. (Profunctor p, Monoidal (->) (,) () (,) () (,) () p) => hkd p -> p (hkd First) (hkd Second) | ||
default sequence :: forall p. (Profunctor p, Monoidal (->) (,) () (,) () (,) () p, Generic (hkd p), Generic (hkd First), Generic (hkd Second), GTraversable p (Rep (hkd p)) (Rep (hkd First)) (Rep (hkd Second))) => hkd p -> p (hkd First) (hkd Second) | ||
sequence = dimap from to . gsequence @p @(Rep (hkd p)) @(Rep (hkd First)) @(Rep (hkd Second)) . from | ||
|
||
type GTraversable :: (Type -> Type -> Type) -> (Type -> Type) -> (Type -> Type) -> (Type -> Type) -> Constraint | ||
class GTraversable p f g h where | ||
gsequence :: f x -> p (g x) (h x) | ||
|
||
instance (Profunctor p, GTraversable p f g h) => GTraversable p (M1 _1 _2 f) (M1 _1 _2 g) (M1 _1 _2 h) where | ||
gsequence :: M1 _1 _2 f x -> p (M1 _1 _2 g x) (M1 _1 _2 h x) | ||
gsequence (M1 f) = dimap unM1 M1 $ gsequence f | ||
|
||
instance (Profunctor p) => GTraversable p (K1 _1 (p a b)) (K1 _1 (First a b)) (K1 _1 (Second a b)) where | ||
gsequence :: K1 _1 (p a b) x -> p (K1 _1 (First a b) x) (K1 _1 (Second a b) x) | ||
gsequence (K1 f) = dimap (unFirst . unK1) (K1 . Second) f | ||
|
||
instance (Profunctor p, Monoidal (->) (,) () (,) () (,) () p) => GTraversable p U1 U1 U1 where | ||
gsequence :: U1 x -> p (U1 x) (U1 x) | ||
gsequence U1 = dimap (const ()) (const U1) $ introduce @_ @_ @() () | ||
|
||
instance (Profunctor p, Monoidal (->) (,) () (,) () (,) () p, GTraversable p f1 g1 h1, GTraversable p f2 g2 h2) => GTraversable p (f1 :*: f2) (g1 :*: g2) (h1 :*: h2) where | ||
gsequence :: (:*:) f1 f2 x -> p ((:*:) g1 g2 x) ((:*:) h1 h2 x) | ||
gsequence (hkd1 :*: hkd2) = | ||
let phkd1 = gsequence hkd1 | ||
phkd2 = gsequence hkd2 | ||
in dimap (\(x :*: y) -> (x, y)) (uncurry (:*:)) $ combine (phkd1, phkd2) | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
type First :: Type -> Type -> Type | ||
newtype First x y = First {unFirst :: x} | ||
deriving stock (Generic, Generic1, Functor) | ||
deriving newtype (Bounded, Show, Read, Eq, Ord, Enum, Num, Integral, Real, Semigroup, Monoid) | ||
|
||
instance Contravariant (First x) where | ||
contramap :: (a' -> a) -> First x a -> First x a' | ||
contramap _ (First x) = First x | ||
|
||
instance (Monoid x) => Applicative (First x) where | ||
pure :: a -> First x a | ||
pure _ = First mempty | ||
|
||
liftA2 :: (a -> b -> c) -> First x a -> First x b -> First x c | ||
liftA2 _ (First x) (First x') = First (x <> x') | ||
|
||
instance Bifunctor First where | ||
bimap :: (a -> b) -> (c -> d) -> First a c -> First b d | ||
bimap f _ (First x) = First (f x) | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
type Second :: Type -> Type -> Type | ||
newtype Second x y = Second {unSecond :: y} | ||
deriving stock (Generic, Generic1, Functor) | ||
deriving newtype (Bounded, Show, Read, Eq, Ord, Enum, Num, Integral, Real, Semigroup, Monoid) | ||
|
||
instance Applicative (Second x) where | ||
pure :: a -> Second x a | ||
pure = Second | ||
|
||
liftA2 :: (a -> b -> c) -> Second x a -> Second x b -> Second x c | ||
liftA2 f (Second y) (Second y') = Second (f y y') | ||
|
||
instance Bifunctor Second where | ||
bimap :: (a -> b) -> (c -> d) -> Second a c -> Second b d | ||
bimap _ g (Second y) = Second (g y) | ||
|
||
-------------------------------------------------------------------------------- | ||
-- Example: | ||
|
||
-- type F :: (Type -> Type -> Type) -> Type | ||
-- data F p = F {foo :: p Int String, bar :: p Bool String, baz :: p Bool Bool} | ||
-- deriving stock (Generic) | ||
-- deriving anyclass (Traversable) | ||
|
||
-- deriving instance (forall x y. (Show x, Show y) => Show (p x y)) => Show (F p) | ||
|
||
-- farrow :: F (->) | ||
-- farrow = F {foo = show, bar = show, baz = id} | ||
|
||
-- ffirst :: F First | ||
-- ffirst = F {foo = First 0, bar = First True, baz = First True} | ||
|
||
-- sequencedF :: (->) (F First) (F Second) | ||
-- sequencedF = sequence farrow | ||
|
||
-- example :: F Second | ||
-- example = sequencedF ffirst |