-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
112 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
{-# LANGUAGE DefaultSignatures #-} | ||
{-# LANGUAGE DeriveGeneric #-} | ||
{-# LANGUAGE GeneralizedNewtypeDeriving #-} | ||
{-# LANGUAGE StandaloneKindSignatures #-} | ||
|
||
module Data.Trifunctor.Traversable | ||
( Traversable (..), | ||
First (..), | ||
Second (..), | ||
) | ||
where | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
import Control.Applicative (Applicative (..)) | ||
import Data.Bifunctor (Bifunctor (..)) | ||
import Data.Functor.Contravariant (Contravariant (..)) | ||
import Data.Kind (Constraint, Type) | ||
import Data.Profunctor (Profunctor (..)) | ||
import Data.Trifunctor.Monoidal (Monoidal, Semigroupal (..), Unital (..)) | ||
import GHC.Generics (Generic (..), Generic1, K1 (..), M1 (..), U1 (..), type (:*:) (..)) | ||
import Prelude hiding (Traversable) | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
class Traversable hkd where | ||
sequence :: forall p. (forall x. Profunctor (p x), Monoidal (->) (,) () (,) () (,) () (,) () p) => hkd p -> p (hkd First) (hkd Second) (hkd Third) | ||
|
||
-- default sequence :: forall p. (Profunctor p, Monoidal (->) (,) () (,) () (,) () p, Generic (hkd p), Generic (hkd First), Generic (hkd Second), GTraversable p (Rep (hkd p)) (Rep (hkd First)) (Rep (hkd Second))) => hkd p -> p (hkd First) (hkd Second) | ||
-- sequence = dimap from to . gsequence @p @(Rep (hkd p)) @(Rep (hkd First)) @(Rep (hkd Second)) . from | ||
|
||
type GTraversable :: (Type -> Type -> Type -> Type) -> (Type -> Type) -> (Type -> Type) -> (Type -> Type) -> (Type -> Type) -> Constraint | ||
class GTraversable p f g h i where | ||
gsequence :: f x -> p (g x) (h x) (i x) | ||
|
||
instance (forall x. Profunctor (p x), GTraversable p f g h i) => GTraversable p (M1 _1 _2 f) (M1 _1 _2 g) (M1 _1 _2 h) (M1 _1 _2 i) where | ||
gsequence :: M1 _1 _2 f x -> p (M1 _1 _2 g x) (M1 _1 _2 h x) (M1 _1 _2 i x) | ||
-- NOTE: It looks like we need a trifunctor to make this work: | ||
gsequence (M1 f) = _ $ dimap unM1 M1 $ gsequence @p @f @g @h @i f | ||
|
||
-- instance (Profunctor p) => GTraversable p (K1 _1 (p a b)) (K1 _1 (First a b)) (K1 _1 (Second a b)) where | ||
-- gsequence :: K1 _1 (p a b) x -> p (K1 _1 (First a b) x) (K1 _1 (Second a b) x) | ||
-- gsequence (K1 f) = dimap (unFirst . unK1) (K1 . Second) f | ||
|
||
-- instance (Profunctor p, Monoidal (->) (,) () (,) () (,) () p) => GTraversable p U1 U1 U1 where | ||
-- gsequence :: U1 x -> p (U1 x) (U1 x) | ||
-- gsequence U1 = dimap (const ()) (const U1) $ introduce @_ @_ @() () | ||
|
||
-- instance (Profunctor p, Monoidal (->) (,) () (,) () (,) () p, GTraversable p f1 g1 h1, GTraversable p f2 g2 h2) => GTraversable p (f1 :*: f2) (g1 :*: g2) (h1 :*: h2) where | ||
-- gsequence :: (:*:) f1 f2 x -> p ((:*:) g1 g2 x) ((:*:) h1 h2 x) | ||
-- gsequence (hkd1 :*: hkd2) = | ||
-- let phkd1 = gsequence hkd1 | ||
-- phkd2 = gsequence hkd2 | ||
-- in dimap (\(x :*: y) -> (x, y)) (uncurry (:*:)) $ combine (phkd1, phkd2) | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
type First :: Type -> Type -> Type -> Type | ||
newtype First x y z = First {unFirst :: x} | ||
deriving stock (Generic, Generic1, Functor) | ||
deriving newtype (Bounded, Show, Read, Eq, Ord, Enum, Num, Integral, Real, Semigroup, Monoid) | ||
|
||
instance Contravariant (First x y) where | ||
contramap :: (a' -> a) -> First x y a -> First x y a' | ||
contramap _ (First x) = First x | ||
|
||
instance (Monoid x) => Applicative (First x y) where | ||
pure :: a -> First x y a | ||
pure _ = First mempty | ||
|
||
liftA2 :: (a -> b -> c) -> First x y a -> First x y b -> First x y c | ||
liftA2 _ (First x) (First x') = First (x <> x') | ||
|
||
instance Bifunctor (First x) where | ||
bimap :: (a -> b) -> (c -> d) -> First x a c -> First x b d | ||
bimap _ _ (First x) = First x | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
type Second :: Type -> Type -> Type -> Type | ||
newtype Second x y z = Second {unSecond :: y} | ||
deriving stock (Generic, Generic1, Functor) | ||
deriving newtype (Bounded, Show, Read, Eq, Ord, Enum, Num, Integral, Real, Semigroup, Monoid) | ||
|
||
instance (Monoid y) => Applicative (Second x y) where | ||
pure :: a -> Second x y a | ||
pure _ = Second mempty | ||
|
||
liftA2 :: (a -> b -> c) -> Second x y a -> Second x y b -> Second x y c | ||
liftA2 _ (Second y) (Second y') = Second (y <> y') | ||
|
||
instance Bifunctor (Second x) where | ||
bimap :: (a -> b) -> (c -> d) -> Second x a c -> Second x b d | ||
bimap f _ (Second a) = Second $ f a | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
type Third :: Type -> Type -> Type -> Type | ||
newtype Third x y z = Third {unThird :: z} | ||
deriving stock (Generic, Generic1, Functor) | ||
deriving newtype (Bounded, Show, Read, Eq, Ord, Enum, Num, Integral, Real, Semigroup, Monoid) | ||
|
||
instance Applicative (Third x y) where | ||
pure :: a -> Third x y a | ||
pure = Third | ||
|
||
liftA2 :: (a -> b -> c) -> Third x y a -> Third x y b -> Third x y c | ||
liftA2 f (Third y) (Third y') = Third (f y y') | ||
|
||
instance Bifunctor (Third x) where | ||
bimap :: (a -> b) -> (c -> d) -> Third x a c -> Third x b d | ||
bimap _ g (Third y) = Third (g y) |