-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathreferences.bib
844 lines (778 loc) · 34 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
% Encoding: UTF-8
@article{Safanelli2025,
title = "Open Soil Spectral Library ({OSSL)}: Building reproducible soil
calibration models through open development and community
engagement",
author = "Safanelli, Jos{\'e} L and Hengl, Tomislav and Parente, Leandro L
and Minarik, Robert and Bloom, Dellena E and Todd-Brown,
Katherine and Gholizadeh, Asa and Mendes, Wanderson de Sousa and
Sanderman, Jonathan",
abstract = "Soil spectroscopy is a widely used method for estimating soil
properties that are important to environmental and agricultural
monitoring. However, a bottleneck to its more widespread adoption
is the need for establishing large reference datasets for
training machine learning (ML) models, which are called soil
spectral libraries (SSLs). Similarly, the prediction capacity of
new samples is also subject to the number and diversity of soil
types and conditions represented in the SSLs. To help bridge this
gap and enable hundreds of stakeholders to collect more
affordable soil data by leveraging a centralized open resource,
the Soil Spectroscopy for Global Good initiative has created the
Open Soil Spectral Library (OSSL). In this paper, we describe the
procedures for collecting and harmonizing several SSLs that are
incorporated into the OSSL, followed by exploratory analysis and
predictive modeling. The results of 10-fold cross-validation with
refitting show that, in general, mid-infrared (MIR)-based models
are significantly more accurate than visible and near-infrared
(VisNIR) or near-infrared (NIR) models. From independent model
evaluation, we found that Cubist comes out as the best-performing
ML algorithm for the calibration and delivery of reliable outputs
(prediction uncertainty and representation flag). Although many
soil properties are well predicted, total sulfur, extractable
sodium, and electrical conductivity performed poorly in all
spectral regions, with some other extractable nutrients and
physical soil properties also performing poorly in one or two
spectral regions (VisNIR or NIR). Hence, the use of predictive
models based solely on spectral variations has limitations. This
study also presents and discusses several other open resources
that were developed from the OSSL, aspects of opening data,
current limitations, and future development. With this genuinely
open science project, we hope that OSSL becomes a driver of the
soil spectroscopy community to accelerate the pace of scientific
discovery and innovation.",
journal = "PLoS One",
volume = 20,
number = 1,
pages = "e0296545",
month = jan,
year = 2025,
language = "en",
doi = {10.1371/journal.pone.0296545}
}
@ARTICLE{Safanelli2023,
title = "An interlaboratory comparison of mid-infrared spectra
acquisition: Instruments and procedures matter",
author = "Safanelli, Jos{\'e} L and Sanderman, Jonathan and Bloom, Dellena
and Todd-Brown, Katherine and Parente, Leandro L and Hengl,
Tomislav and Adam, Sean and Albinet, Franck and Ben-Dor, Eyal
and Boot, Claudia M and Bridson, James H and Chabrillat, Sabine
and Deiss, Leonardo and Dematt{\^e}, Jos{\'e} A M and Scott
Demyan, M and Dercon, Gerd and Doetterl, Sebastian and van
Egmond, Fenny and Ferguson, Rich and Garrett, Loretta G and
Haddix, Michelle L and Haefele, Stephan M and Heiling, Maria and
Hernandez-Allica, Javier and Huang, Jingyi and Jastrow, Julie D
and Karyotis, Konstantinos and Machmuller, Megan B and Khesuoe,
Malefetsane and Margenot, Andrew and Matamala, Roser and Miesel,
Jessica R and Mouazen, Abdul M and Nagel, Penelope and Patel,
Sunita and Qaswar, Muhammad and Ramakhanna, Selebalo and Resch,
Christian and Robertson, Jean and Roudier, Pierre and
Sabetizade, Marmar and Shabtai, Itamar and Sherif, Faisal and
Sinha, Nishant and Six, Johan and Summerauer, Laura and Thomas,
Cathy L and Toloza, Arsenio and Tomczyk-W{\'o}jtowicz, Beata and
Tsakiridis, Nikolaos L and van Wesemael, Bas and Woodings,
Finnleigh and Zalidis, George C and {\.Z}elazny, Wiktor R",
journal = "Geoderma",
publisher = "Elsevier BV",
volume = 440,
number = 116724,
pages = "116724",
month = dec,
year = 2023,
copyright = "http://creativecommons.org/licenses/by/4.0/",
language = "en",
doi = {10.1016/j.geoderma.2023.116724}
}
@ARTICLE{Partida2025,
title = "Building a near-infrared ({NIR}) soil spectral dataset and
predictive machine learning models using a handheld {NIR}
spectrophotometer",
author = "Partida, Colleen and Safanelli, Jose Lucas and Mitu, Sadia
Mannan and Murad, Mohammad Omar Faruk and Ge, Yufeng and
Ferguson, Richard and Shepherd, Keith and Sanderman, Jonathan",
abstract = "This near-infrared spectral dataset consists of 2,106 diverse
mineral soil samples scanned, on average, on six different units
of the same low-cost commercially available handheld
spectrophotometer. Most soil samples were selected from the USDA
NRCS National Soil Survey Center-Kellogg Soil Survey Laboratory
(NSSC-KSSL) soil archives to represent the diversity of mineral
soils (0-30 cm) found in the United States, while 90 samples
were selected from Ghana, Kenya, and Nigeria to represent
available African soils in the same archive. All scanning was
performed on dried and sieved (<2 mm) soil samples. Machine
learning predictive models were developed for soil organic
carbon (SOC), pH, bulk density (BD), carbonate (CaCO3),
exchangeable potassium (Ex. K), sand, silt, and clay content
from their spectra in the R programming language using most of
this dataset (1,976 US soils) and are included in this data
release. Two model types, Cubist and partial least squares
regression (PLSR) were developed using two strategies: (1) using
an average of the spectral scans across devices for each sample
and, (2) using the replicate spectral scans across devices for
each sample. We present the internal performance of these models
here. The dry spectra and Cubist models for these soil
properties are available for download from
10.5281/zenodo.7586621. An example of detailed code used to
produce these models is hosted at the Open Soil Spectral
Library, a free service of the Soil Spectroscopy for the Global
Good Network (soilspectroscopy.org), enabling broad use of these
data for multiple soil monitoring applications.",
journal = "Data Brief",
publisher = "Elsevier BV",
volume = 58,
number = 111229,
pages = "111229",
month = feb,
year = 2025,
keywords = "Chemometrics; Pedometrics; Soil analysis; Soil organic carbon;
Soil spectroscopy",
copyright = "http://creativecommons.org/licenses/by/4.0/",
language = "en",
doi = {10.1016/j.dib.2024.111229}
}
@ARTICLE{Mitu2024,
title = "Evaluating consistency across multiple {NeoSpectra} (compact
Fourier transform near‐infrared) spectrometers for estimating
common soil properties",
author = "Mitu, Sadia M and Smith, Colleen and Sanderman, Jonathan and
Ferguson, Richard R and Shepherd, Keith and Ge, Yufeng",
abstract = "AbstractRapid and cost‐effective techniques for soil analysis
are essential to guide sustainable land management and
production agriculture. This study aimed at evaluating the
performance and consistency of portable handheld
Fourier‐transform near‐infrared spectrometers and the NeoSpectra
scanners in estimating 12 common soil physical and chemical
properties including pH; organic carbon (OC); inorganic carbon
(IC); total nitrogen (TN); cation exchange capacity (CEC); clay,
silt, and sand fractions; and exchangeable potassium (K),
phosphorus (P), calcium (Ca), and magnesium (Mg). A diverse set
of samples (n = 600) were retrieved from a national‐scale soil
archive of the Kellogg Soil Survey Laboratory of USDA‐NRCS and
scanned with five NeoSpectra scanners. Predictive models for the
soil properties were developed using partial least squares
regression (PLSR), Cubist, and memory‐based learning (MBL).
Cubist outperformed PLSR and MBL, with the best prediction
performance for clay, OC, and CEC (R2 > 0.7), followed by IC,
sand, silt, and Mg (R2 > 0.6), and then pH, TN, and Ca (R2 >
0.5). K and P were predicted somewhat poorly with R2 of 0.48 and
0.22. All five NeoSpectra yielded comparable near‐infrared (NIR)
spectral data and the PLSR models for the soil properties (in
terms of model regression coefficients). However, the
consistency assessment showed that the model performance was
significantly decreased when the training and testing spectra
were from different NeoSpectra scanners. It is concluded that
NeoSpectra scanners could be rapid and cost effective for
estimating certain soil properties, and calibration transfer
should be considered for applications where multiple devices are
involved and high estimation accuracy from NIR data is required.",
journal = "Soil Sci. Soc. Am. J.",
publisher = "Wiley",
volume = 88,
number = 4,
pages = "1324--1339",
month = jul,
year = 2024,
copyright = "http://creativecommons.org/licenses/by/4.0/",
language = "en",
doi = {10.1002/saj2.20678}
}
@Article{mlr3,
title = {{mlr3}: A modern object-oriented machine learning
framework in {R}},
author = {Michel Lang and Martin Binder and Jakob Richter and
Patrick Schratz and Florian Pfisterer and Stefan Coors and Quay
Au and Giuseppe Casalicchio and Lars Kotthoff and Bernd Bischl},
journal = {Journal of Open Source Software},
year = {2019},
month = {dec},
doi = {10.21105/joss.01903},
url = {https://joss.theoj.org/papers/10.21105/joss.01903},
}
@inproceedings{quinlan1992learning,
title={Learning with continuous classes},
author={Quinlan, JR},
booktitle={Proc. 5th Australian Joint Conference on Artificial Intelligence, Tasmania, 1992},
pages={343--348},
year={1992}
}
@inproceedings{quinlan1993combining,
title={Combining instance-based and model-based learning},
author={Quinlan, JR},
booktitle={Proc. Tenth Int. Conference on Machine Learning},
pages={236--243},
year={1993}
}
@article{Yang2020,
doi = {10.1016/j.neucom.2020.07.061},
url = {https://doi.org/10.1016/j.neucom.2020.07.061},
year = {2020},
month = nov,
publisher = {Elsevier {BV}},
volume = {415},
pages = {295--316},
author = {Li Yang and Abdallah Shami},
title = {On hyperparameter optimization of machine learning algorithms: Theory and practice},
journal = {Neurocomputing}
}
@article{Barnes1989,
doi = {10.1366/0003702894202201},
url = {https://doi.org/10.1366/0003702894202201},
year = {1989},
month = jul,
publisher = {{SAGE} Publications},
volume = {43},
number = {5},
pages = {772--777},
author = {R. J. Barnes and M. S. Dhanoa and Susan J. Lister},
title = {Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra},
journal = {Applied Spectroscopy}
}
@article{Norinder2014,
doi = {10.1021/ci5001168},
url = {https://doi.org/10.1021/ci5001168},
year = {2014},
month = may,
publisher = {American Chemical Society ({ACS})},
volume = {54},
number = {6},
pages = {1596--1603},
author = {Ulf Norinder and Lars Carlsson and Scott Boyer and Martin Eklund},
title = {Introducing Conformal Prediction in Predictive Modeling. A Transparent and Flexible Alternative to Applicability Domain Determination},
journal = {Journal of Chemical Information and Modeling}
}
@article{CortsCiriano2015,
doi = {10.1093/bioinformatics/btv529},
url = {https://doi.org/10.1093/bioinformatics/btv529},
year = {2015},
month = sep,
publisher = {Oxford University Press ({OUP})},
volume = {32},
number = {1},
pages = {85--95},
author = {Isidro Cort{\'{e}}s-Ciriano and Gerard J. P. van Westen and Guillaume Bouvier and Michael Nilges and John P. Overington and Andreas Bender and Th{\'{e}}r{\`{e}}se E. Malliavin},
title = {Improved large-scale prediction of growth inhibition patterns using the {NCI}60 cancer cell line panel},
journal = {Bioinformatics}
}
@article{Dangal2019,
doi = {10.3390/soilsystems3010011},
url = {https://doi.org/10.3390/soilsystems3010011},
year = {2019},
month = jan,
publisher = {{MDPI} {AG}},
volume = {3},
number = {1},
pages = {11},
author = {Shree Dangal and Jonathan Sanderman and Skye Wills and Leonardo Ramirez-Lopez},
title = {Accurate and Precise Prediction of Soil Properties from a Large Mid-Infrared Spectral Library},
journal = {Soil Systems}
}
@article{Jovi2019,
doi = {10.1016/j.saa.2018.08.039},
url = {https://doi.org/10.1016/j.saa.2018.08.039},
year = {2019},
month = jan,
publisher = {Elsevier {BV}},
volume = {206},
pages = {506--511},
author = {B. Jovi{\'{c}} and V. {\'{C}}iri{\'{c}} and M. Kova{\v{c}}evi{\'{c}} and S. {\v{S}}ereme{\v{s}}i{\'{c}} and B. Kordi{\'{c}}},
title = {Empirical equation for preliminary assessment of soil texture},
journal = {Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy}
}
@article{Garrett2022,
doi = {10.1016/j.tfp.2022.100280},
url = {https://doi.org/10.1016/j.tfp.2022.100280},
year = {2022},
month = jun,
publisher = {Elsevier},
volume = {8},
pages = {100280},
author = {Loretta G. Garrett and Jonathan Sanderman and David J. Palmer and Fiona Dean and Sunita Patel and James H. Bridson and Thomas Carlin},
title = {Mid-infrared spectroscopy for planted forest soil and foliage nutrition predictions, New Zealand case study},
journal = {Trees, Forests and People}
}
@article{Schiedung2022,
doi = {10.1016/j.catena.2022.106194},
url = {https://doi.org/10.1016/j.catena.2022.106194},
year = {2022},
month = jun,
publisher = {Elsevier},
volume = {213},
pages = {106194},
author = {Marcus Schiedung and Severin-Luca Bell{\`{e}} and Avni Malhotra and Samuel Abiven},
title = {Organic carbon stocks, quality and prediction in permafrost-affected forest soils in North Canada},
journal = {{CATENA}}
}
@incollection{Wills2014,
doi = {10.1007/978-3-319-04084-4_10},
url = {https://doi.org/10.1007/978-3-319-04084-4_10},
year = {2014},
publisher = {Springer International Publishing},
pages = {95--104},
author = {Skye Wills and Terrance Loecke and Cleiton Sequeira and George Teachman and Sabine Grunwald and Larry T. West},
title = {Overview of the U.S. Rapid Carbon Assessment Project: Sampling Design, Initial Summary and Uncertainty Estimates},
booktitle = {Soil Carbon}
}
@article{Wijewardane2016,
doi = {10.2136/sssaj2016.02.0052},
url = {https://doi.org/10.2136/sssaj2016.02.0052},
year = {2016},
month = jul,
publisher = {Wiley},
volume = {80},
number = {4},
pages = {973--982},
author = {Nuwan K. Wijewardane and Yufeng Ge and Skye Wills and Terry Loecke},
title = {Prediction of Soil Carbon in the Conterminous United States: Visible and Near Infrared Reflectance Spectroscopy Analysis of the Rapid Carbon Assessment Project},
journal = {Soil Science Society of America Journal}
}
@article{angelopoulou2020laboratory,
title={From laboratory to proximal sensing spectroscopy for soil organic carbon estimation—a review},
author={Angelopoulou, Theodora and Balafoutis, Athanasios and Zalidis, George and Bochtis, Dionysis},
journal={Sustainability},
volume={12},
number={2},
pages={443},
year={2020},
doi={10.3390/su12020443},
publisher={Multidisciplinary Digital Publishing Institute}
}
@article{hengl2021african,
title={African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning},
author={Hengl, Tomislav and Miller, Matthew AE and Kri{\v{z}}an, Josip and Shepherd, Keith D and Sila, Andrew and Kilibarda, Milan and Antonijevi{\'c}, Ognjen and Glu{\v{s}}ica, Luka and Dobermann, Achim and Haefele, Stephan M and others},
journal={Scientific Reports},
volume={11},
number={1},
pages={1--18},
year={2021},
doi={10.1038/s41598-021-85639-y},
publisher={Nature Publishing Group}
}
@article{brocca2019sm2rain,
title={{SM2RAIN--ASCAT (2007--2018): global daily satellite rainfall data from ASCAT soil moisture observations}},
author={Brocca, Luca and Filippucci, Paolo and Hahn, Sebastian and Ciabatta, Luca and Massari, Christian and Camici, Stefania and Sch{\"u}ller, Lothar and Bojkov, Bojan and Wagner, Wolfgang},
journal={Earth System Science Data},
volume={11},
number={4},
pages={1583--1601},
year={2019},
doi={10.5194/essd-11-1583-2019},
publisher={Copernicus GmbH}
}
@article{dematte2020bare,
title={Bare earth's surface spectra as a proxy for soil resource monitoring},
author={Dematt{\^e}, Jos{\'e} AM and Safanelli, Jos{\'e} Lucas and Poppiel, Raul Roberto and Rizzo, Rodnei and Silvero, N{\'e}lida Elizabet Qui{\~n}onez and de Sousa Mendes, Wanderson and Bonfatti, Benito Roberto and Dotto, Andr{\'e} Carnieletto and Salazar, Diego Fernando Urbina and de Oliveira Mello, Fellipe Alcantara and others},
journal={Scientific reports},
volume={10},
number={1},
pages={1--11},
doi={10.1038/s41598-020-61408-1},
year={2020},
publisher={Nature Publishing Group}
}
@Article{Summerauer2021,
AUTHOR = {Summerauer, L. and Baumann, P. and Ramirez-Lopez, L. and Barthel, M. and Bauters, M. and Bukombe, B. and Reichenbach, M. and Boeckx, P. and Kearsley, E. and Van Oost, K. and Vanlauwe, B. and Chiragaga, D. and Heri-Kazi, A. B. and Moonen, P. and Sila, A. and Shepherd, K. and Bazirake Mujinya, B. and Van Ranst, E. and Baert, G. and Doetterl, S. and Six, J.},
TITLE = {The central African soil spectral library: a new soil infrared repository and a geographical prediction analysis},
JOURNAL = {SOIL},
VOLUME = {7},
YEAR = {2021},
NUMBER = {2},
PAGES = {693--715},
URL = {https://soil.copernicus.org/articles/7/693/2021/},
DOI = {10.5194/soil-7-693-2021}
}
@article{sanderman2020mid,
title={{Mid-infrared spectroscopy for prediction of soil health indicators in the United States}},
author={Sanderman, Jonathan and Savage, Kathleen and Dangal, Shree RS},
journal={Soil Science Society of America Journal},
volume={84},
number={1},
doi={10.1002/saj2.20009},
pages={251--261},
year={2020},
publisher={Wiley Online Library}
}
@article{jensen2018converting,
title={Converting loss-on-ignition to organic carbon content in arable topsoil: pitfalls and proposed procedure},
author={Jensen, JL and Christensen, BT and Schj{\o}nning, P and Watts, CW and Munkholm, LJ},
journal={European journal of soil science},
volume={69},
number={4},
pages={604--612},
year={2018},
doi={10.1111/ejss.12558},
publisher={Wiley Online Library}
}
@article{sanderman2021can,
title={Can Agricultural Management Induced Changes in Soil Organic Carbon Be Detected Using Mid-Infrared Spectroscopy?},
author={Sanderman, Jonathan and Savage, Kathleen and Dangal, Shree RS and Duran, Gabriel and Rivard, Charlotte and Cavigelli, Michel A and Gollany, Hero T and Jin, Virginia L and Liebig, Mark A and Omondi, Emmanuel Chiwo and others},
journal={Remote Sensing},
volume={13},
number={12},
pages={2265},
year={2021},
doi={10.3390/rs13122265},
publisher={Multidisciplinary Digital Publishing Institute}
}
@article{dudek2021mid,
title={Mid-Infrared Spectroscopy Supports Identification of the Origin of Organic Matter in Soils},
author={Dudek, Micha{\l} and Kaba{\l}a, Cezary and {\L}abaz, Beata and Mitu{\l}a, Pawe{\l} and Bednik, Magdalena and Medy{\'n}ska-Juraszek, Agnieszka},
journal={Land},
volume={10},
number={2},
pages={215},
year={2021},
doi={10.3390/land10020215},
publisher={Multidisciplinary Digital Publishing Institute}
}
@article{elrashidi2007application,
title={Application of equivalent gypsum content to estimate potential subsidence of gypsiferous soils},
author={Elrashidi, MA and Hammer, D and Seybold, CA and Engel, RJ and Burt, R and Jones, P},
journal={Soil science},
volume={172},
number={3},
pages={209--224},
year={2007},
publisher={LWW}
}
@article{vohland2022quantification,
title={{Quantification of soil organic carbon at regional scale: Benefits of fusing vis-NIR and MIR diffuse reflectance data are greater for in situ than for laboratory-based modelling approaches}},
author={Vohland, Michael and Ludwig, Bernard and Seidel, Michael and Hutengs, Christopher},
journal={Geoderma},
volume={405},
pages={115426},
year={2022},
doi={10.1016/j.geoderma.2021.115426},
publisher={Elsevier}
}
@article{lei2022achieving,
title={Achieving joint calibration of soil Vis-NIR spectra across instruments, soil types and properties by an attention-based spectra encoding-spectra/property decoding architecture},
author={Lei, Tong and Sun, Da-Wen},
journal={Geoderma},
volume={405},
pages={115449},
doi={10.1016/j.geoderma.2021.115449},
year={2022},
publisher={Elsevier}
}
@article{camargo2021improving,
title={Improving soil organic carbon mapping with a field-specific calibration approach through diffuse reflectance spectroscopy and machine learning algorithms},
author={Camargo, Livia Arantes and do Amaral, Lucas Rios and dos Reis, Aliny Aparecida and Brasco, Thiago Luis and Magalh{\~a}es, Paulo Sergio Graziano},
journal={Soil Use and Management},
year={2021},
doi={10.1111/sum.12775},
publisher={Wiley Online Library}
}
@article{chang2001near,
title={Near-infrared reflectance spectroscopy--principal components regression analyses of soil properties},
author={Chang, Cheng-Wen and Laird, David and Mausbach, Maurice J and Hurburgh Jr, Charles R},
journal={Soil Science Society of America Journal},
volume={65},
number={2},
doi={10.2136/sssaj2001.652480x},
pages={480},
year={2001}
}
@article{Jackson1979,
doi = {10.1080/00401706.1979.10489779},
url = {https://doi.org/10.1080/00401706.1979.10489779},
year = {1979},
month = aug,
publisher = {Informa {UK} Limited},
volume = {21},
number = {3},
pages = {341--349},
author = {J. Edward Jackson and Govind S. Mudholkar},
title = {Control Procedures for Residuals Associated With Principal Component Analysis},
journal = {Technometrics}
}
@article{deSantana2023,
doi = {10.1016/j.geoderma.2023.116491},
url = {https://doi.org/10.1016/j.geoderma.2023.116491},
year = {2023},
month = jun,
publisher = {Elsevier {BV}},
volume = {434},
pages = {116491},
author = {Felipe B. de Santana and Rebecca.L. Hall and Victoria Lowe and Margaret A. Browne and Eric C. Grunsky and Mair{\'{e}}ad M. Fitzsimons and Vincent Gallagher and Karen Daly},
title = {A systematic approach to predicting and mapping soil particle size distribution from unknown samples using large mid-infrared spectral libraries covering large-scale heterogeneous areas},
journal = {Geoderma}
}
@article{wijewardane2018predicting,
title={{Predicting physical and chemical properties of US soils with a mid-infrared reflectance spectral library}},
author={Wijewardane, Nuwan K and Ge, Yufeng and Wills, Skye and Libohova, Zamir},
journal={Soil Science Society of America Journal},
volume={82},
number={3},
pages={722--731},
year={2018},
doi={10.2136/sssaj2017.10.0361},
publisher={Wiley Online Library}
}
@article{ayres2019quantitative,
title={Quantitative Guidelines for Establishing and Operating Soil Archives},
author={Ayres, Edward},
journal={Soil Science Society of America Journal},
volume={83},
number={4},
doi={10.2136/sssaj2019.02.0050},
pages={973--981},
year={2019},
publisher={Wiley Online Library}
}
@article{orgiazzi2018lucas,
title={{LUCAS Soil, the largest expandable soil dataset for Europe: a review}},
author={Orgiazzi, Alberto and Ballabio, Cristiano and Panagos, Panagiotis and Jones, Arwyn and Fern{\'a}ndez-Ugalde, Oihane},
journal={European Journal of Soil Science},
volume={69},
number={1},
pages={140--153},
doi={10.1111/ejss.12499},
year={2018},
publisher={Wiley Online Library}
}
@book{Vagen_2020,
author = {Vagen, Tor-Gunnar and Winowiecki, Leigh Ann and Desta, Luseged and Tondoh, Ebagnerin Jerome and Weullow, Elvis and Shepherd, Keith and Sila, Andrew},
publisher = {World Agroforestry - Research Data Repository},
title = "{{Mid-Infrared Spectra (MIRS) from ICRAF Soil and Plant Spectroscopy Laboratory: Africa Soil Information Service (AfSIS) Phase I 2009-2013}}",
year = {2020},
doi = {10.34725/DVN/QXCWP1},
url = {https://doi.org/10.34725/DVN/QXCWP1}
}
@Article{friedman2010,
title = {{Regularization Paths for Generalized Linear Models via Coordinate Descent}},
author = {Jerome Friedman and Trevor Hastie and Robert Tibshirani},
journal = {Journal of Statistical Software},
year = {2010},
volume = {33},
number = {1},
pages = {1--22},
doi = {10.18637/jss.v033.i01},
}
@article{chen2015xgboost,
title={{Xgboost: extreme gradient boosting}},
author={Chen, Tianqi and He, Tong and Benesty, Michael and Khotilovich, Vadim and Tang, Yuan and Cho, Hyunsu and others},
journal={CRAN R-Project},
url={https://cran.r-project.org/package=xgboost},
year={2015}
}
@article{wright2017ranger,
title={{ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R}},
author={Wright, Marvin N and Ziegler, Andreas},
journal={Journal of Statistical Software},
volume={77},
number={1},
doi={10.18637/jss.v077.i01},
pages={1--17},
year={2017}
}
@article{kuhn2012cubist,
title={Cubist models for regression},
author={Kuhn, Max and Weston, Steve and Keefer, Chris and Coulter, Nathan},
journal={CRAN R-Project},
url={https://cran.r-project.org/package=Cubist},
year={2012}
}
@book{garrity2004globally,
title={A globally distributed soil spectral library visible near infrared diffuse reflectance spectra},
author={Garrity, Dennis and Bindraban, Prem},
publisher={ICRAF (World Agroforestry Centre) / ISRIC (World Soil Information) Spectral Library},
address={Nairobi, Kenya},
url={https://doi.org/10.34725/DVN/MFHA9C},
year={2004}
}
@article{aitkenhead2018exploring,
title={{Exploring the impact of different input data types on soil variable estimation using the ICRAF-ISRIC global soil spectral database}},
author={Aitkenhead, Matt J and Black, Helaina IJ},
journal={Applied spectroscopy},
volume={72},
number={2},
doi={10.1177/0003702817739013},
pages={188--198},
year={2018},
publisher={Society for Applied Spectroscopy}
}
@incollection{mclean1983soil,
title={{Soil pH and lime requirement}},
author={McLean, EO},
booktitle={Methods of soil analysis: Part 2 Chemical and microbiological properties},
volume={9},
pages={199--224},
year={1983},
publisher={Wiley Online Library}
}
@incollection{sumner1996cation,
title={Cation exchange capacity and exchange coefficients},
author={Sumner, Malcolm E and Miller, William P},
booktitle={Methods of soil analysis: Part 3 Chemical methods},
volume={5},
pages={1201--1229},
year={1996},
publisher={Wiley Online Library}
}
@book{mallarino1999interpreting,
title={{Interpreting Mehlich-3 soil test results}},
author={Mallarino, A and Sawyer, JE},
publisher={Integrated Crop Management Newsletter, IC-482 (2)},
pages={11--14},
address={Iowa State University, Ames, IA},
year={1999}
}
@book{bohner2008saga,
title={SAGA—Seconds Out, vol. 19},
author={B{\"o}hner, J and Blaschke, T and Montanarella, L},
publisher={Hamburger Beitr{\"a}ge zur Physischen Geographie und Landschafts{\"o}kologie},
address={Hamburg, Germany},
year={2008}
}
@article{miller2010comparison,
title={{Comparison of soil pH methods on soils of North America}},
author={Miller, Robert O and Kissel, David E},
journal={Soil Science Society of America Journal},
volume={74},
number={1},
doi={10.2136/sssaj2008.0047},
pages={310--316},
year={2010}
}
@article{indorante1990particle,
title={Particle-size analysis by a modified pipette procedure},
author={Indorante, SJ and Hammer, RD and Koenig, PG and Follmer, LR},
journal={Soil Science Society of America Journal},
volume={54},
number={2},
pages={560--563},
year={1990}
}
@book{american2006standard,
title={Standard Practice for Description and Identification of Soils (visual-manual Procedure)},
author={American Society for Testing and Materials. Committee D18 on Soils and Rock and American Society for Testing and Materials. Subcommittee D18.07 on Identification and Classification of Soils and ASTM International},
year={2006},
address={Philadelphia, PA},
publisher={ASTM International}
}
@incollection{grossman20022,
title={2.1 Bulk density and linear extensibility},
author={Grossman, RB and Reinsch, TG},
booktitle={Methods of soil analysis: Part 4 physical methods},
volume={5},
pages={201--228},
year={2002},
publisher={Wiley Online Library}
}
@incollection{loeppert1996carbonate,
title={Carbonate and gypsum},
author={Loeppert, Richard H and Suarez, Donald L and others},
booktitle={Methods of soil analysis. Part 3 Chemical methods},
volume={3},
pages={437--474},
publisher={Wiley Online Library},
year={1996}
}
@incollection{bremner1996nitrogen,
title={Nitrogen-total},
author={Bremner, John M},
booktitle={Methods of soil analysis: Part 3 Chemical methods},
volume={5},
pages={1085--1121},
year={1996},
publisher={Wiley Online Library}
}
@incollection{thomas1982exchangeable,
title={Exchangeable cations. p. 159--165. AL Page et al.(ed.) Methods of soil analysis. Part 2. Agron. Monogr. 9. ASA and SSSA},
author={Thomas, GW},
booktitle={Exchangeable cations. p. 159--165. In AL Page et al.(ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9},
publisher={ASA and SSSA},
address={Madison, WI},
year={1982}
}
@book{agriculture2019soil,
title={Soil Survey Field and Laboratory Methods Manual - Soil Survey Investigations Report No. 51 (Version 2) Issued 2014},
author={{USDA NRCS}},
isbn={9780359573516},
year={2019},
publisher={U.S. Department of Agriculture, Natural Resources Conservation Service},
address={Lincoln, Nebraska},
}
@incollection{nelson1983total,
title={Total carbon, organic carbon, and organic matter},
author={Nelson, DW and Sommers, L\_E},
booktitle={Methods of soil analysis: Part 2 chemical and microbiological properties},
volume={9},
pages={539--579},
year={1983},
publisher={Wiley Online Library}
}
@article{skaggs2001estimating,
title={Estimating particle-size distribution from limited soil texture data},
author={Skaggs, TH and Arya, LM and Shouse, PJ and Mohanty, BP},
journal={Soil Science Society of America Journal},
volume={65},
number={4},
pages={1038--1044},
year={2001},
publisher={Wiley Online Library}
}
@article{hong2022fusion,
title={Fusion of visible-to-near-infrared and mid-infrared spectroscopy to estimate soil organic carbon},
author={Hong, Yongsheng and Munnaf, Muhammad Abdul and Guerrero, Angela and Chen, Songchao and Liu, Yaolin and Shi, Zhou and Mouazen, Abdul Mounem},
journal={Soil and Tillage Research},
volume={217},
pages={105284},
doi={10.1016/j.still.2021.105284},
year={2022},
publisher={Elsevier}
}
@article{moeys2018soil,
title={{The soil texture wizard: R functions for plotting, classifying, transforming and exploring soil texture data}},
author={Moeys, Julien},
journal={CRAN R-Project},
url={https://cran.r-project.org/package=soiltexture},
year={2018}
}
@article{helling1964contribution,
title={Contribution of organic matter and clay to soil cation-exchange capacity as affected by the pH of the saturating solution},
author={Helling, Charles S and Chesters, G and Corey, RB},
journal={Soil Science Society of America Journal},
volume={28},
number={4},
pages={517--520},
year={1964},
publisher={Wiley Online Library}
}
@book{malone2021soil,
title={{Soil Spectral Inference with R: Analysing Digital Soil Spectra Using the R Programming Environment}},
author={Wadoux, A.M.J.C. and Malone, B. and McBratney, A.B. and Fajardo, M. and Minasny, B.},
isbn={9783030648961},
series={Progress in Soil Science},
year={2021},
publisher={Springer International Publishing}
}
@article{ramcharan2017soil,
title={{A soil bulk density pedotransfer function based on machine learning: A case study with the NCSS soil characterization database}},
author={Ramcharan, Amanda and Hengl, Tomislav and Beaudette, Dylan and Wills, Skye},
journal={Soil Science Society of America Journal},
volume={81},
number={6},
pages={1279--1287},
doi={10.2136/sssaj2016.12.0421},
year={2017},
publisher={Wiley Online Library}
}
@book{BenedettiEgmond2021,
title={{Global Soil Spectroscopy Assessment. Spectral soil data --- Needs and capacities}},
author={Benedetti, F. and {van Egmond}, F.},
year={2021},
doi={10.4060/cb6265en},
publisher={FAO},
address={Rome, Italy},
pages={42},
isbn={978-92-5-134830-7}
}
@book{hengl2019predictive,
title={{Predictive soil mapping with R}},
author={Hengl, Tomislav and MacMillan, Robert A},
year={2019},
url={https://soilmapper.org},
publisher={Lulu. com},
pages={370},
isbn={978-0-359-30635-0}
}