-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvmtrain1.m
59 lines (49 loc) · 1.79 KB
/
svmtrain1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
function models = svmtrain1(TrainingSet,GroupTrain)
u=unique(GroupTrain);
numClasses=length(u);
% TrainingSet = scale_normalize(TrainingSet,1,0);
TrainingSet=TrainingSet';
GroupTrain=GroupTrain';
%% kernels
% Kdata = alldist2(TrainingSet, 'chi2') ;
Kdata = hist_isect_svm(TrainingSet', TrainingSet');
clear TrainingSet
% Kdata = vl_alldist2(TrainingSet, 'kchi2') ;
% name=strcat('Ktrain',num2str(sp));
% save(name,'Kdata','-v7.3');
% load (name)
% load Kdata-ns-chi.mat
% Kdata= Kdata ./ std(Kdata(:));
% Kdata=Kdata-mean(Kdata(:));
% mu=0.2;
% mu= 1 ./ mean(Kdata(:))
% Kdata = exp(- mu * Kdata) ;
%%%% Gaussian%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% X = TrainingSet';
% norm1 = sum(X.^2,2);
% norm2 = sum(X.^2,2);
% dist = (repmat(norm1 ,1,size(X,1)) + repmat(norm2',size(X,1),1) - 2*X*X');
% mu=sqrt(mean(dist(:))/2)
% % mu=0.0002;
% Kdata = exp(-0.5/mu^2 * dist);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
% Kdata= Kdata./std(Kdata(:));
% Kdata=Kdata-mean(Kdata(:));
% Kdata = exp(0.2*Kdata);
%%
%build models
for k=1:numClasses
Y = 2 * (GroupTrain==u(k)) - 1;
models(k) = svmtrain(Y(:), double([(1:length(GroupTrain))' Kdata]), [' -t 4 -s 0 -w-1 1 -w1 ' num2str(length(find(Y==-1))/length(find(Y==1))) ' -c 1.0']) ;
ap = mean(models(k).sv_coef(Y(models(k).SVs) > 0)) ;
am = mean(models(k).sv_coef(Y(models(k).SVs) < 0)) ;
if ap < am
% fprintf('svmflip: SVM appears to be flipped. Adjusting.\n') ;
models(k).sv_coef = - models(k).sv_coef ;
models(k).rho = - models(k).rho ;
end
% % test it on train
% train_scores = models(k).sv_coef' * Kdata(models(k).SVs, :) - models(k).rho ;
% errs = train_scores .* Y < 0 ;
% err = mean(errs) ;
end