From 493455e0f80c190c5e01ec63554b81c5f0801d55 Mon Sep 17 00:00:00 2001 From: statmlben Date: Tue, 12 Nov 2024 11:56:41 +0800 Subject: [PATCH] add img RR ipynb --- .gitignore | 6 +- .../RankRegression-checkpoint.ipynb | 103 +++++++++++++----- doc/source/examples/RankRegression.ipynb | 103 +++++++++++++----- 3 files changed, 155 insertions(+), 57 deletions(-) diff --git a/.gitignore b/.gitignore index faa2713..0d29f81 100644 --- a/.gitignore +++ b/.gitignore @@ -33,4 +33,8 @@ eigen3.zip .history/ # Built Visual Studio Code Extensions -*.vsix \ No newline at end of file +*.vsix + +# python checkpoint +*-checkpoint.ipynb +*-checkpoint.py diff --git a/doc/source/examples/.ipynb_checkpoints/RankRegression-checkpoint.ipynb b/doc/source/examples/.ipynb_checkpoints/RankRegression-checkpoint.ipynb index 781baa2..eb93e0c 100644 --- a/doc/source/examples/.ipynb_checkpoints/RankRegression-checkpoint.ipynb +++ b/doc/source/examples/.ipynb_checkpoints/RankRegression-checkpoint.ipynb @@ -69,7 +69,7 @@ }, { "cell_type": "code", - "execution_count": 200, + "execution_count": 1, "metadata": { "id": "r3VoUcR4FceK" }, @@ -100,7 +100,7 @@ }, { "cell_type": "code", - "execution_count": 201, + "execution_count": 2, "metadata": { "id": "OcdNUtvrn_Hy" }, @@ -127,7 +127,7 @@ }, { "cell_type": "code", - "execution_count": 202, + "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -144,15 +144,15 @@ }, { "cell_type": "code", - "execution_count": 203, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 811 ms, sys: 105 ms, total: 916 ms\n", - "Wall time: 915 ms\n" + "CPU times: user 793 ms, sys: 132 ms, total: 925 ms\n", + "Wall time: 925 ms\n" ] } ], @@ -175,7 +175,7 @@ }, { "cell_type": "code", - "execution_count": 204, + "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -197,15 +197,15 @@ }, { "cell_type": "code", - "execution_count": 205, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 744 ms, sys: 77.2 ms, total: 821 ms\n", - "Wall time: 819 ms\n" + "CPU times: user 737 ms, sys: 95 ms, total: 832 ms\n", + "Wall time: 830 ms\n" ] } ], @@ -227,7 +227,7 @@ }, { "cell_type": "code", - "execution_count": 206, + "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -239,13 +239,13 @@ { "data": { "text/html": [ - "
LinearRegression(fit_intercept=False)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + "
LinearRegression(fit_intercept=False)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "LinearRegression(fit_intercept=False)" ] }, - "execution_count": 206, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -257,8 +257,10 @@ }, { "cell_type": "code", - "execution_count": 207, - "metadata": {}, + "execution_count": 8, + "metadata": { + "scrolled": true + }, "outputs": [ { "name": "stdout", @@ -291,6 +293,60 @@ " print(f\"{str(key).ljust(20)} {str(value).ljust(20)}\")" ] }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAHqCAYAAADrpwd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfCElEQVR4nOzde1xUdf7H8TeIDBMKBCEXQSXSLDMzLbe01GTzkqZltaaZtzIpLS9ZuaWVaWZpuVpidtFsdft1Mdfa1TK1tVo1L1mtuaWII6ngBOLIbWCG8/vDmHWEUURgBng9H495PDzfc+bM54zWZ+Yz3/P5+hmGYQgAAAAAAAAAAJTh7+0AAAAAAAAAAADwVRTRAQAAAAAAAADwgCI6AAAAAAAAAAAeUEQHAAAAAAAAAMADiugAAAAAAAAAAHhAER0AAAAAAAAAAA8oogMAAAAAAAAA4AFFdAAAAAAAAAAAPKCIDgAAAAAAAACABxTRAXhdixYtNHz48LMet3TpUvn5+enAgQPVFsuBAwfk5+enpUuXVttrAABQWz3zzDPy8/Or0LF+fn565plnqjWebt26qVu3btX6GgCA6jV8+HA1atTI22HUasOHD1eLFi28HUaN+fLLL+Xn56cvv/zyrMfWxGeFc/l8hNqLIjpQA/z8/Cr0qEgCqE7dunVzi8dsNuvKK6/UvHnzVFJS4tXYAADwpt27d+uee+5R06ZNZTKZFBsbqyFDhmj37t1lji390Xf79u1nPKfVatUjjzyi1q1by2w2q0mTJrr22mv1+OOPKzc394zPLX2N0kdAQICaNm2q4cOH69ChQ+d1rQCA+qU255TS4mXpo2HDhmrRooUefvhh5eTkeDu8Oq90Elrpw9/fX+Hh4erdu7c2b97s7fCAKhXg7QCA+uDdd9912162bJnWrVtXZvyyyy6rybDKFRcXp1mzZkmSfvvtN61YsUITJkyQ1WrVzJkzq+U1f/75Z/n785seAMA3rVy5UnfffbfCw8M1atQoJSQk6MCBA3rrrbf04Ycf6r333tNtt912TufMzs5Wx44dZbPZNHLkSLVu3VpZWVn64YcflJKSouTk5ArNyps+fboSEhJUWFioLVu2aOnSpfr666/1n//8R0FBQZW9ZI+eeuopPfHEE1V+XgCA99V0TqlKKSkpatSokfLy8rR+/XotWLBAO3fu1Ndff+3t0GrEG2+84dWJb3fffbf69Okjp9OpX375RQsXLlT37t21bds2tW3btspf78Ybb1RBQYECAwOr/NyAJxTRgRpwzz33uG1v2bJF69atKzN+uvz8fF1wwQXVGVoZoaGhbnGNGTNGrVu31oIFCzR9+nQ1aNCgyl/TZDJV+TkBAKgKqampGjp0qC6++GJt2rRJkZGRrn2PPPKIbrjhBg0dOlQ//PCDLr744gqf96233tLBgwf1zTff6Prrr3fbZ7PZKvylsHfv3urYsaMk6b777tNFF12k2bNna/Xq1brrrrsqHE9FBQQEKCCArxAAUBfVdE6pSnfccYcuuugiSdIDDzygQYMG6f/+7//07bff6tprr62xOEpKSlRUVFTjPzo0bNiwRl/vdFdffbVbHeGGG25Q7969lZKSooULF1b56/n7+/v8Dzuoe5j6CfiIbt266YorrtCOHTt044036oILLtCf//xnSZ57ipbXSzwnJ0fjx49XfHy8TCaTLrnkEs2ePbvSv0oHBQXpmmuu0YkTJ3T06FG3fX/961/VoUMHmc1mhYeHa9CgQUpPT3c7Zu/evRo4cKCio6MVFBSkuLg4DRo0SMePHz/jdezevVs33XSTzGaz4uLiNGPGjHKvoaLvTXZ2th599FG1bdtWjRo1UkhIiHr37q3vv//+rO9BRkaGRowYobi4OJlMJsXExKh///7V2psdAOAbXnrpJeXn52vx4sVuBXRJuuiii/T6668rLy9PL7744jmdNzU1VQ0aNNAf/vCHMvtCQkIq/cXwhhtucJ3/VP/97391xx13KDw8XEFBQerYsaNWr17tdkxxcbGeffZZtWzZUkFBQYqIiFCXLl20bt061zHl9fy02+2aMGGCIiMj1bhxY91666369ddfy8TmqV9reedcsmSJbrrpJjVp0kQmk0mXX365UlJSKvQeLFiwQG3atNEFF1ygCy+8UB07dtSKFSsq9FwAwP+Ul1OKioo0bdo0dejQQaGhoQoODtYNN9ygjRs3uj23tM3HnDlztHjxYiUmJspkMumaa67Rtm3bzvrau3btUmRkpLp163bWFmcVjV2Stm7dql69eik0NFQXXHCBunbtqm+++abM87/88kt17NhRQUFBSkxM1Ouvv15uvvLz89PYsWO1fPlytWnTRiaTSWvXrpUkHTp0SCNHjlRUVJRMJpPatGmjt99+u8xrnS1vnThxQuPHj1eLFi1kMpnUpEkT/fGPf9TOnTtdx5SXY/Py8jRp0iRXbeDSSy/VnDlzZBhGudewatUqXXHFFa5YS6+jMjy9/xWtV7z33nvq0KGDGjdurJCQELVt21Z/+ctfXPs99UQv/bdmNpt17bXX6quvvioTm6e11so751dffaU777xTzZo1k8lkUnx8vCZMmKCCgoKzvgfr1q1Tly5dFBYWpkaNGunSSy911XhQOzGNBPAhWVlZ6t27twYNGqR77rlHUVFR5/T8/Px8de3aVYcOHdIDDzygZs2a6d///remTJmiI0eOaN68eZWKq/QDUFhYmGts5syZmjp1qu666y7dd999slqtWrBggW688UZ99913CgsLU1FRkXr27Cm73a5x48YpOjpahw4d0qeffqqcnByFhoaW+3oZGRnq3r27HA6HnnjiCQUHB2vx4sUym82Vil+S9u/fr1WrVunOO+9UQkKCMjMz9frrr6tr16766aefFBsb6/G5AwcO1O7duzVu3Di1aNFCR48e1bp163Tw4MF6tXgLANRHn3zyiVq0aOH6Mni6G2+8US1atNA//vGPczpv8+bN5XQ69e6772rYsGFVEaokub4QXnjhha6x3bt3q3PnzmratKkrr77//vsaMGCAPvroI1crmmeeeUazZs3Sfffdp2uvvVY2m03bt2/Xzp079cc//tHja953333661//qsGDB+v666/Xhg0bdMstt5zXdaSkpKhNmza69dZbFRAQoE8++UQPPvigSkpK9NBDD3l83htvvKGHH35Yd9xxhx555BEVFhbqhx9+0NatWzV48ODzigkA6pvycorNZtObb76pu+++W/fff79OnDiht956Sz179tS3336rq666yu0cK1as0IkTJ/TAAw/Iz89PL774om6//Xbt37/f4+zpbdu2qWfPnurYsaP+/ve/V+p7YHmxb9iwQb1791aHDh309NNPy9/f3/Wj7VdffeWasf7dd9+pV69eiomJ0bPPPiun06np06eX+TH91PO+//77Gjt2rC666CK1aNFCmZmZ+sMf/uAqUEdGRmrNmjUaNWqUbDabxo8fL6lieWvMmDH68MMPNXbsWF1++eXKysrS119/rT179ujqq68uNybDMHTrrbdq48aNGjVqlK666ip99tlnmjx5sg4dOqRXXnnF7fivv/5aK1eu1IMPPqjGjRtr/vz5GjhwoA4ePKiIiIgqef8rWq9Yt26d7r77bvXo0UOzZ8+WJO3Zs0fffPONHnnkEY+v+dZbb+mBBx7Q9ddfr/Hjx2v//v269dZbFR4ervj4+HO+Bkn64IMPlJ+fr+TkZEVEROjbb7/VggUL9Ouvv+qDDz7w+Lzdu3erb9++uvLKKzV9+nSZTCbt27ev3B9sUIsYAGrcQw89ZJz+n1/Xrl0NScaiRYvKHC/JePrpp8uMN2/e3Bg2bJhr+7nnnjOCg4ONX375xe24J554wmjQoIFx8ODBM8bVtWtXo3Xr1obVajWsVqvx3//+15g8ebIhybjllltcxx04cMBo0KCBMXPmTLfn//jjj0ZAQIBr/LvvvjMkGR988MEZX/f06xg/frwhydi6datr7OjRo0ZoaKghyUhLS3ONV/S9KSwsNJxOp9sxaWlphslkMqZPn+42JslYsmSJYRiGcezYMUOS8dJLL53xGgAAdU9OTo4hyejfv/8Zj7v11lsNSYbNZjMMwzCWLFliSDK2bdvm8TkZGRlGZGSkIclo3bq1MWbMGGPFihVGTk5OhWIrfY0vvvjCsFqtRnp6uvHhhx8akZGRhslkMtLT013H9ujRw2jbtq1RWFjoGispKTGuv/56o2XLlq6xdu3aueX78jz99NNun2F27dplSDIefPBBt+MGDx5cJkcPGzbMaN68+VnPaRiGkZ+fX+a4nj17GhdffLHbWNeuXY2uXbu6tvv372+0adPmjNcAAHB3LjnF4XAYdrvd7fnHjh0zoqKijJEjR7rGSr9XRUREGNnZ2a7xv//974Yk45NPPnGNDRs2zAgODjYMwzC+/vprIyQkxLjlllvc8pYnpTnk559/NqxWq3HgwAHj7bffNsxmsxEZGWnk5eUZhnEy77Vs2dLo2bOnUVJS4np+fn6+kZCQYPzxj390jfXr18+44IILjEOHDrnG9u7dawQEBJTJV5IMf39/Y/fu3W7jo0aNMmJiYozffvvNbXzQoEFGaGioK89VJG+FhoYaDz300BmPOT3Hrlq1ypBkzJgxw+24O+64w/Dz8zP27dvndg2BgYFuY99//70hyViwYMEZX7f07/nZZ581rFarkZGRYXz11VfGNddcU6YWUNF6xSOPPGKEhIQYDofD4+tu3LjRkGRs3LjRMAzDKCoqMpo0aWJcddVVbv8+Fy9ebEhy+6xQ+u/91LpCeec0jPI/j8yaNcvw8/MzLBaLa+z0zzKvvPKKIcmwWq0erwG1D+1cAB9iMpk0YsSISj//gw8+0A033KALL7xQv/32m+uRlJQkp9OpTZs2nfUc//3vfxUZGanIyEi1bt1aL730km699VYtXbrUdczKlStVUlKiu+66y+11oqOj1bJlS9etfKUzzT/77DPl5+dX+Dr++c9/6g9/+INb77rIyEgNGTKkwuc4nclkci1e6nQ6lZWV5bql6tTb4E5nNpsVGBioL7/8UseOHav06wMAap8TJ05Ikho3bnzG40r322y2Cp87KipK33//vcaMGaNjx45p0aJFGjx4sJo0aaLnnnuuzK3WniQlJSkyMlLx8fG64447FBwcrNWrVysuLk7SyXZmGzZs0F133aUTJ064cnZWVpZ69uypvXv36tChQ5KksLAw7d69W3v37q3wdfzzn/+UJD388MNu46Uz7Crr1FmHx48f12+//aauXbtq//79bi3hThcWFqZff/21Qq0CAADuzpZTJKlBgwaudTtKSkqUnZ0th8Ohjh07lvu96k9/+pPbbOTSO7v2799f5tiNGzeqZ8+e6tGjh1auXHlOa2ddeumlioyMVIsWLTRy5EhdcsklWrNmjWuNsV27dmnv3r0aPHiwsrKyXPkwLy9PPXr00KZNm1RSUiKn06kvvvhCAwYMcLtb+ZJLLlHv3r3Lfe2uXbvq8ssvd20bhqGPPvpI/fr1k2EYbt+Ze/bsqePHj7veq4rkrbCwMG3dulWHDx+u8Pvxz3/+Uw0aNCiTnydNmiTDMLRmzRq38aSkJCUmJrq2r7zySoWEhJT791Sep59+WpGRkYqOjtYNN9ygPXv2aO7cubrjjjtcx1S0XhEWFqa8vDy3dnJns337dh09elRjxoxxW1dm+PDhHu+Ar4hTP4/k5eXpt99+0/XXXy/DMPTdd995fF7pXfx///vfvbrgK6oWRXTAhzRt2vS8Vpfeu3ev1q5d6yqClz6SkpIkqUxP8/K0aNFC69at02effaaFCxeqadOmslqtbr1Z9+7dK8Mw1LJlyzKvtWfPHtfrJCQkaOLEiXrzzTd10UUXqWfPnnrttdfO+OVXkiwWi1q2bFlm/NJLLz2Xt8NNSUmJXnnlFbVs2VImk0kXXXSRIiMj9cMPP5wxHpPJpNmzZ2vNmjWKiorSjTfeqBdffFEZGRmVjgUAUDuUFsdLi+meVLTYfrqYmBilpKToyJEj+vnnnzV//nxFRkZq2rRpeuuttyp0jtdee03r1q3Thx9+qD59+ui3335zKzrs27dPhmFo6tSpZXL2008/Lel/nw+mT5+unJwctWrVSm3bttXkyZP1ww8/nPH1LRaL/P393b54S+eXsyXpm2++UVJSkoKDgxUWFqbIyEhXH9Ez5e3HH39cjRo10rXXXquWLVvqoYce4tZpAKigs+WUUu+8846uvPJK1/oZkZGR+sc//lHu/5+bNWvmtl1aUD99glJhYaFuueUWtW/fXu+///45fy/+6KOPtG7dOq1YsUJ/+MMfdPToUbcCaOkPxMOGDSuTD998803Z7XYdP35cR48eVUFBgS655JIyr1HemHTye++prFarcnJyXOupnPoonTRXmnsrkrdefPFF/ec//1F8fLyuvfZaPfPMM2ctblssFsXGxpb5bHLZZZe59p/q9L8n6eTfVUUnko0ePVrr1q3TJ5984uoZ7nQ63Y6paL3iwQcfVKtWrdS7d2/FxcVp5MiRZ+3PXno9p9cRGjZseE4Lv5/u4MGDGj58uMLDw9WoUSNFRkaqa9euks78eeRPf/qTOnfurPvuu09RUVEaNGiQ3n//fQrqtRw90QEfcq693k5PSiUlJfrjH/+oxx57rNzjW7VqddZzBgcHu5KYJHXu3FlXX321/vznP2v+/Pmu1/Hz89OaNWvUoEGDMudo1KiR689z587V8OHD9fe//12ff/65Hn74Yc2aNUtbtmxxm9FQ1U5/b55//nlNnTpVI0eO1HPPPafw8HD5+/tr/PjxZ01k48ePV79+/bRq1Sp99tlnmjp1qmbNmqUNGzaoffv21XYNAADvCg0NVUxMzFkLyT/88IOaNm2qkJCQSr2On5+fWrVqpVatWumWW25Ry5YttXz5ct13331nfe61116rjh07SpIGDBigLl26aPDgwfr555/VqFEjV4579NFH1bNnz3LPUVoUuPHGG5WamurK2W+++aZeeeUVLVq0qEKxVOQ6y3N6zk5NTVWPHj3UunVrvfzyy4qPj1dgYKD++c9/6pVXXjlj3r7sssv0888/69NPP9XatWv10UcfaeHChZo2bZqeffbZ874GAKjLzpZTJOmvf/2rhg8frgEDBmjy5Mlq0qSJGjRooFmzZpVZRFJSud8XJZW548pkMqlPnz76+9//rrVr16pv377nFPuNN96oiy66SJLUr18/tW3bVkOGDNGOHTvk7+/vyh0vvfRSmb7tpRo1aqTCwsJzel2p7Pf40te65557PK57cuWVV0qqWN666667dMMNN+jjjz/W559/rpdeekmzZ8/WypUrPc6OP1cV/XvypGXLlq46Qt++fdWgQQM98cQT6t69u+vfVEXrFU2aNNGuXbv02Wefac2aNVqzZo2WLFmie++9V++88865XloZFf084nQ69cc//lHZ2dl6/PHH1bp1awUHB+vQoUMaPnz4GT+PmM1mbdq0SRs3btQ//vEPrV27Vv/3f/+nm266SZ9//rnH9xu+jSI6UAtceOGFysnJcRsrKirSkSNH3MYSExOVm5vrVgQ/X1deeaXuuecevf7663r00UfVrFkzJSYmyjAMJSQkVKgw37ZtW7Vt21ZPPfWU/v3vf6tz585atGiRZsyYUe7xzZs3L/dW8p9//rnMWEXfmw8//FDdu3cvM7MvJyfH9WHrTBITEzVp0iRNmjRJe/fu1VVXXaW5c+fqr3/961mfCwCovfr27as33nhDX3/9tbp06VJm/1dffaUDBw7ogQceqJLXu/jii3XhhReWyWMVUVrE6N69u1599VU98cQTrtlXDRs2rNDng/DwcI0YMUIjRoxQbm6ubrzxRj3zzDMei+jNmzdXSUmJUlNT3WafVzRnS2Vnw33yySey2+1avXq128y40nZxZxMcHKw//elP+tOf/qSioiLdfvvtmjlzpqZMmeJ2Zx0AwLPycop08nvVxRdfrJUrV7oVI0vvbqosPz8/LV++XP3799edd96pNWvWqFu3bpU6V6NGjfT0009rxIgRev/99zVo0CDXHVMhISFnzIdNmjRRUFCQ9u3bV2ZfeWPliYyMVOPGjeV0OiuUeyuSt2JiYvTggw/qwQcf1NGjR3X11Vdr5syZHovozZs31xdffKETJ064zUb/73//69pfnZ588km98cYbeuqpp1yzyM+lXhEYGKh+/fqpX79+Kikp0YMPPqjXX39dU6dOLfeOgNLr2bt3r2666SbXeHFxsdLS0tSuXTvXWOndEKd/Jjn988iPP/6oX375Re+8847uvfde13hF28z4+/urR48e6tGjh15++WU9//zzevLJJ7Vx48Yqrdmg5tDOBagFEhMTy/QzX7x4cZlfSu+66y5t3rxZn332WZlz5OTkyOFwVOr1H3vsMRUXF+vll1+WJN1+++1q0KCBnn322TK/TBuGoaysLEkne8Oe/ppt27aVv7+/7Ha7x9fr06ePtmzZom+//dY1ZrVatXz58jLHVvS9adCgQZlYP/jgA1cfWE/y8/PLzEZITExU48aNz3gNAIC6YfLkyTKbzXrggQdc+a1Udna2xowZowsuuECTJ08+p/Nu3bpVeXl5Zca//fZbZWVlVbodSrdu3XTttddq3rx5KiwsVJMmTdStWze9/vrr5RbmrVar68+nX1+jRo10ySWXnDHflX55L71brdS8efPKHJuYmKjjx4+7zew/cuSIPv74Y7fjSmdnnZq3jx8/riVLlniMw9M1BAYG6vLLL5dhGCouLj7r8wEA/3N6TpHK/3/01q1btXnz5vN+vcDAQK1cuVLXXHON+vXr5/Z98FwNGTJEcXFxmj17tiSpQ4cOSkxM1Jw5c5Sbm1vm+NJ82KBBAyUlJWnVqlVuPcj37dtXpo+4Jw0aNNDAgQP10Ucf6T//+Y/H15LOnrecTmeZtiFNmjRRbGzsWb9TO51Ovfrqq27jr7zyivz8/KpsBrsnYWFheuCBB/TZZ59p165dkiperzj9PfH393fN3Pd0zR07dlRkZKQWLVqkoqIi1/jSpUvLFMtLf1A5tY7gdDq1ePFit+PK+7duGIb+8pe/eLzuUtnZ2WXGSu+AoI5QezETHagF7rvvPo0ZM0YDBw7UH//4R33//ff67LPPysygnjx5slavXq2+fftq+PDh6tChg/Ly8vTjjz/qww8/1IEDByo06/p0l19+ufr06aM333xTU6dOVWJiombMmKEpU6bowIEDGjBggBo3bqy0tDR9/PHHGj16tB599FFt2LBBY8eO1Z133qlWrVrJ4XDo3XffdX2o8OSxxx7Tu+++q169eumRRx5RcHCwFi9erObNm5e5pb6i703fvn01ffp0jRgxQtdff71+/PFHLV++/Kz90X755Rf16NFDd911ly6//HIFBATo448/VmZmpgYNGnTO7yUAoHZp2bKl3nnnHQ0ZMkRt27bVqFGjlJCQoAMHDuitt97Sb7/9pr/97W9leoJL0ttvv11uD89HHnlE7777rpYvX67bbrtNHTp0UGBgoPbs2aO3335bQUFBrv7flTF58mTdeeedWrp0qcaMGaPXXntNXbp0Udu2bXX//ffr4osvVmZmpjZv3qxff/1V33//vaST+b5bt27q0KGDwsPDtX37dn344YcaO3asx9e66qqrdPfdd2vhwoU6fvy4rr/+eq1fv77c2XqDBg3S448/rttuu00PP/yw8vPzlZKSolatWrktRnfzzTe7ZqA98MADys3N1RtvvKEmTZqcdYb+zTffrOjoaHXu3FlRUVHas2ePXn31Vd1yyy3n3LMeAFA2p/Tt21crV67UbbfdpltuuUVpaWlatGiRLr/88nKL0+fKbDbr008/1U033aTevXvrX//6l6644opzPk/Dhg31yCOPaPLkyVq7dq169eqlN998U71791abNm00YsQINW3aVIcOHdLGjRsVEhKiTz75RJL0zDPP6PPPP1fnzp2VnJzsKkZfccUVroLw2bzwwgvauHGjOnXqpPvvv1+XX365srOztXPnTn3xxReuIuvZ8lZOTo7i4uJ0xx13qF27dmrUqJG++OILbdu2TXPnzvX4+v369VP37t315JNP6sCBA2rXrp0+//xz/f3vf9f48ePL/dxS1R555BHNmzdPL7zwgt57770K1yvuu+8+ZWdn66abblJcXJwsFosWLFigq666ytXT/XQNGzbUjBkz9MADD+imm27Sn/70J6WlpWnJkiVlvvO3adNGf/jDHzRlyhRlZ2crPDxc7733XpkJgK1bt1ZiYqIeffRRHTp0SCEhIfroo48q1Cd++vTp2rRpk2655RY1b95cR48e1cKFCxUXF1funY2oJQwANe6hhx4yTv/Pr2vXrkabNm3KPd7pdBqPP/64cdFFFxkXXHCB0bNnT2Pfvn1G8+bNjWHDhrkde+LECWPKlCnGJZdcYgQGBhoXXXSRcf311xtz5swxioqKzhjXmWL48ssvDUnG008/7Rr76KOPjC5duhjBwcFGcHCw0bp1a+Ohhx4yfv75Z8MwDGP//v3GyJEjjcTERCMoKMgIDw83unfvbnzxxRdu5y7vOn744Qeja9euRlBQkNG0aVPjueeeM9566y1DkpGWlnbO701hYaExadIkIyYmxjCbzUbnzp2NzZs3G127djW6du3qOi4tLc2QZCxZssQwDMP47bffjIceesho3bq1ERwcbISGhhqdOnUy3n///TO+lwCAuuWHH34w7r77biMmJsZo2LChER0dbdx9993Gjz/+WObYJUuWGJI8PtLT040ffvjBmDx5snH11Vcb4eHhRkBAgBETE2Pceeedxs6dO88aT+lrbNu2rcw+p9NpJCYmGomJiYbD4TAMwzBSU1ONe++914iOjjYaNmxoNG3a1Ojbt6/x4Ycfup43Y8YM49prrzXCwsIMs9lstG7d2pg5c6bb54enn366zGeYgoIC4+GHHzYiIiKM4OBgo1+/fkZ6enqZzw2GYRiff/65ccUVVxiBgYHGpZdeavz1r38t95yrV682rrzySiMoKMho0aKFMXv2bOPtt98u8zng9Dz++uuvGzfeeKMRERFhmEwmIzEx0Zg8ebJx/Pjxs76nAFBfnUtOKSkpMZ5//nmjefPmhslkMtq3b298+umnxrBhw4zmzZu7nlf6veqll14qc87T88OwYcOM4OBgt2N+++034/LLLzeio6ONvXv3eoy9NIdYrdYy+44fP26Ehoa65YnvvvvOuP322115onnz5sZdd91lrF+/3u2569evN9q3b28EBgYaiYmJxptvvmlMmjTJCAoKKnMtDz30ULmxZWZmGg899JARHx/v+uzQo0cPY/Hixa5jzpa37Ha7MXnyZKNdu3ZG48aNjeDgYKNdu3bGwoUL3V7r9PffME7WBiZMmGDExsYaDRs2NFq2bGm89NJLRklJSYWuobzv6ac709+zYRjG8OHDjQYNGhj79u1zxXS2esWHH35o3HzzzUaTJk2MwMBAo1mzZsYDDzxgHDlyxHXejRs3GpKMjRs3ur3ewoULjYSEBMNkMhkdO3Y0Nm3aVOazgmGc/FyUlJRkmEwmIyoqyvjzn/9srFu3rsw5f/rpJyMpKclo1KiRcdFFFxn333+/8f3337vVDAyj7Oej9evXG/379zdiY2ONwMBAIzY21rj77ruNX3755YzvJ3ybn2FUcJUAAAAAAAAAoB4aMGCAdu/eXe76XQDqPnqiAwAAAAAAAL8rKChw2967d6/++c9/VnqxUwC1HzPRAQAAAAAAgN/FxMRo+PDhuvjii2WxWJSSkiK73a7vvvtOLVu29HZ4ALyAhUUBAAAAAACA3/Xq1Ut/+9vflJGRIZPJpOuuu07PP/88BXSgHmMmOgAAAAAAAAAAHtATHQAAAAAAAAAADyiiAwAAAAAAAADgAT3RJZWUlOjw4cNq3Lix/Pz8vB0OAACSJMMwdOLECcXGxsrfn9+9T0XuBgD4InK3Z+RuAIAvqmjupogu6fDhw4qPj/d2GAAAlCs9PV1xcXHeDsOnkLsBAL6M3F0WuRsA4MvOlrspoktq3LixpJNvVkhIiJejAQDgJJvNpvj4eFeewv+QuwEAvojc7Rm5GwDgiyqauymiS65byUJCQkjmAACfwy3PZZG7AQC+jNxdFrkbAODLzpa7adIGAAAAAAAAAIAHFNEBAAAAAAAAAPCAIjoAAAAAAAAAAB5QRAcAAAAAAAAAwAOK6AAAAAAAAAAAeEARHQAAAAAAAAAADyiiAwAAAAAAAADggVeL6Js2bVK/fv0UGxsrPz8/rVq1yuOxY8aMkZ+fn+bNm+c2np2drSFDhigkJERhYWEaNWqUcnNzqzdwAAAAAAAAAEC94NUiel5entq1a6fXXnvtjMd9/PHH2rJli2JjY8vsGzJkiHbv3q1169bp008/1aZNmzR69OjqChkAAAAAAAAAUI8EePPFe/furd69e5/xmEOHDmncuHH67LPPdMstt7jt27Nnj9auXatt27apY8eOkqQFCxaoT58+mjNnTrlFdwAAAAAAAAAAKsqne6KXlJRo6NChmjx5stq0aVNm/+bNmxUWFuYqoEtSUlKS/P39tXXrVo/ntdvtstlsbg8AAAAAAAAAAE7n00X02bNnKyAgQA8//HC5+zMyMtSkSRO3sYCAAIWHhysjI8PjeWfNmqXQ0FDXIz4+vkrjBgAAAAAAAADUDT5bRN+xY4f+8pe/aOnSpfLz86vSc0+ZMkXHjx93PdLT06v0/AAAAAAAAACAusFni+hfffWVjh49qmbNmikgIEABAQGyWCyaNGmSWrRoIUmKjo7W0aNH3Z7ncDiUnZ2t6Ohoj+c2mUwKCQlxewAAAAAAAAAAcDqvLix6JkOHDlVSUpLbWM+ePTV06FCNGDFCknTdddcpJydHO3bsUIcOHSRJGzZsUElJiTp16lTjMQMAAAAAAAAA6havzkTPzc3Vrl27tGvXLklSWlqadu3apYMHDyoiIkJXXHGF26Nhw4aKjo7WpZdeKkm67LLL1KtXL91///369ttv9c0332js2LEaNGiQYmNjvXhlAADUTZs2bVK/fv0UGxsrPz8/rVq1yuOxY8aMkZ+fn+bNm+c2np2drSFDhigkJERhYWEaNWqUcnNzqzdwAAAAAAAqyasz0bdv367u3bu7tidOnChJGjZsmJYuXVqhcyxfvlxjx45Vjx495O/vr4EDB2r+/PnVES5Qq1itVtlsNtd2SEiIIiMjvRgRgLogLy9P7dq108iRI3X77bd7PO7jjz/Wli1byv1Re8iQITpy5IjWrVun4uJijRgxQqNHj9aKFSuqM3Sg1iGXAwBQu5C7gbrLq0X0bt26yTCMCh9/4MCBMmPh4eF86QZOY7ValTx4sOxZWa4xU0SEUlasIIEDOC+9e/dW7969z3jMoUOHNG7cOH322We65ZZb3Pbt2bNHa9eu1bZt29SxY0dJ0oIFC9SnTx/NmTOHO8mA31mtVo0cPUYnCgpdY43NQXp78SJyOQAAPshqtSr5vsGy557yPbxRhFLe5Hs4UBf4bE90AJVns9lkz8rSJJNJ8Waz0gsKNDcrSzabjeQNoFqVlJRo6NChmjx5stq0aVNm/+bNmxUWFuYqoEtSUlKS/P39tXXrVt12223lntdut8tut7u2T53hA9RFNptNJwoK1W1osiJi4pR15Fd9+W4KuRwAAB9y6sxzi8WivJxMPX5bsOIjzUq3FmjuJ3wPB+oKiuhAHRZvNisxOPjkxinFJwCoLrNnz1ZAQIAefvjhcvdnZGSoSZMmbmMBAQEKDw9XRkaGx/POmjVLzz77bJXGCtQGETFxim6e4O0wAADAaU6feZ6Xb1dmRrqahLVTYtPfv4eL7+FAXeHVhUUBAEDdsWPHDv3lL3/R0qVL5efnV6XnnjJlio4fP+56pKenV+n5AQAAgHNhs9lkz83SpH4mzRsZplE9AmU4HXI6Hd4ODUA1oIgOAACqxFdffaWjR4+qWbNmCggIUEBAgCwWiyZNmqQWLVpIkqKjo3X06FG35zkcDmVnZys6OtrjuU0mk0JCQtweAAAAgLfFR5qV2DRYMeFB3g4FQDWinQsAAKgSQ4cOVVJSkttYz549NXToUI0YMUKSdN111yknJ0c7duxQhw4dJEkbNmxQSUmJOnXqVOMxAwAAAABwNhTRAQBAheXm5mrfvn2u7bS0NO3atUvh4eFq1qyZIiIi3I5v2LChoqOjdemll0qSLrvsMvXq1Uv333+/Fi1apOLiYo0dO1aDBg1SbGxsjV4LAAAAAAAVQTsXAABQYdu3b1f79u3Vvn17SdLEiRPVvn17TZs2rcLnWL58uVq3bq0ePXqoT58+6tKlixYvXlxdIQMAAAAAcF6YiQ4AACqsW7duMgyjwscfOHCgzFh4eLhWrFhRhVEBAAAAAFB9mIkOAAAAAAAAAIAHFNEBAAAAAAAAAPCAIjoAAAAAAAAAAB5QRAcAAAAAAAAAwAOK6AAAAAAAAAAAeEARHQAAAAAAAAAADyiiAwAAAAAAAADgAUV0AAAAAAAAAAA8oIgOAAAAAAAAAIAHFNEBAAAAAAAAAPAgwNsBAAAAAAAAAL7OarXKZrNJkiwWixwOh5cjAlBTKKIDAAAAAAAAZ2C1WpV832DZc7MkSXn5dmVmpMteHOrlyADUBIroAAAAAAAAwBnYbDbZc7M0qZ9J8ZFmbdlzTDOXOeR0MhsdqA/oiQ4AAAAAAABUQHykWYlNgxUTHuTtUADUIIroAAAAAAAAAAB4QBEdAAAAAAAAAAAPKKIDAAAAAAAAAOABRXQAAAAAAAAAADygiA4AAAAAAAAAgAcB3g4AAAAAAAAAqGvsRcWyWCyu7ZCQEEVGRnoxIgCVRREdgCTJarXKZrNJIrEDAAAAAHA+smxF2p9m0QvTxslkMkmSTI0ilPLmCr5vA7UQRXQAslqtSh48WPasLEmSKSJCKStI7AAAAAAAVEZugVOB/g5N6BuoVvFhSrcWaO4nWbLZbHzXBmohiugAZLPZZM/K0qTffx2fm0ViBwAAAADgfMVFBimxafDvW3avxgKg8iiiA3XEqe1YLBaLHA7HOZ8j3mw++Qc7iR0AAAAAAACQJH9vBwDg/JW2Yxl/550af+edmjFunA4eOCB7cbG3QwMAAADgRZs2bVK/fv0UGxsrPz8/rVq1yrWvuLhYjz/+uNq2bavg4GDFxsbq3nvv1eHDh93OkZ2drSFDhigkJERhYWEaNWqUcnNza/hKAADwHoroQB1wajuWeWFhGhUYKMPhkLMSs9EBAAAA1B15eXlq166dXnvttTL78vPztXPnTk2dOlU7d+7UypUr9fPPP+vWW291O27IkCHavXu31q1bp08//VSbNm3S6NGja+oSAADwOtq5AHVIvNmsxOBgWQoKvB0KAAAAAB/Qu3dv9e7du9x9oaGhWrdundvYq6++qmuvvVYHDx5Us2bNtGfPHq1du1bbtm1Tx44dJUkLFixQnz59NGfOHMXGxlb7NQAA4G3MRAcAAAAAAJKk48ePy8/PT2FhYZKkzZs3KywszFVAl6SkpCT5+/tr69atHs9jt9tls9ncHgAA1FbMRAcAAAC84NRFwSUpJCREkZGRXowIQH1XWFioxx9/XHfffbdCQkIkSRkZGWrSpInbcQEBAQoPD1dGRobHc82aNUvPPvtstcYLAEBNoYgOAAAA1DCr1aqRo8foREGha6yxOUhvL15EIR2AVxQXF+uuu+6SYRhKSUk57/NNmTJFEydOdG3bbDbFx8ef93kBAPAGiugAAABADbPZbDpRUKhuQ5MVEROnrCO/6st3U2Sz2SiiA6hxpQV0i8WiDRs2uGahS1J0dLSOHj3qdrzD4VB2draio6M9ntNkMslkMlVbzAAA1CSK6EA9deot5BaLRQ6Hw8sRAQBQ/0TExCm6eYK3wwBQj5UW0Pfu3auNGzcqIiLCbf91112nnJwc7dixQx06dJAkbdiwQSUlJerUqZM3QgYAoMZRRAfqIavVquTBg2XPypIk5dntykxPlz00VKaGDb0cHQAAAICqkpubq3379rm209LStGvXLoWHhysmJkZ33HGHdu7cqU8//VROp9PV5zw8PFyBgYG67LLL1KtXL91///1atGiRiouLNXbsWA0aNEixsbHeuiwAAGoURXSgHrLZbLJnZWmSyaR4s1lbjh3TTIdDTodDoogOAIBXFBXZZbFYJHGXGICqs337dnXv3t21XdqnfNiwYXrmmWe0evVqSdJVV13l9ryNGzeqW7dukqTly5dr7Nix6tGjh/z9/TVw4EDNnz+/RuIHAMAXUEQH6rF4s1mJwcGyFBR4OxQAAOq1EznZSkvdryefe14mk0kF+Xk6nJGp4uIib4cGoJbr1q2bDMPwuP9M+0qFh4drxYoVVRkWAAC1CkV0AAAAwMsK8/Pk37Chug5NVtMWidq7a5s+WjhHTqfT26EBAAAA9Z6/N19806ZN6tevn2JjY+Xn56dVq1a59hUXF+vxxx9X27ZtFRwcrNjYWN177706fPiw2zmys7M1ZMgQhYSEKCwsTKNGjVJubm4NXwkAAABw/iKiYxXdPEFhTaK9HQoAAACA33m1iJ6Xl6d27drptddeK7MvPz9fO3fu1NSpU7Vz506tXLlSP//8s2699Va344YMGaLdu3dr3bp1+vTTT7Vp0yaNHj26pi4BAAAAAAAAAFCHebWdS+/evdW7d+9y94WGhmrdunVuY6+++qquvfZaHTx4UM2aNdOePXu0du1abdu2TR07dpQkLViwQH369NGcOXNYKRwAAAAAAAAAcF68OhP9XB0/flx+fn4KCwuTJG3evFlhYWGuArokJSUlyd/fX1u3bvVSlAAAAAAAAIA7e1GxLBaLUlNTZbVavR0OgHNQaxYWLSws1OOPP667775bISEhkqSMjAw1adLE7biAgACFh4crIyPD47nsdrvsdrtr22azVU/QAAAAAAAAqPeybEXan2bRC9PGyWQyydQoQilvrlBkZKS3QwNQAbViJnpxcbHuuusuGYahlJSU8z7frFmzFBoa6nrEx8dXQZQAAAAAAABAWbkFTgX6OzShb6Am9TPJnpvFpE6gFvH5InppAd1isWjdunWuWeiSFB0draNHj7od73A4lJ2drejoaI/nnDJlio4fP+56pKenV1v8AAAAAAAAqH2sVqtSU1OVmpoqi8Uih8Nx3ueMiwxSfKS5CqIDUJN8uoheWkDfu3evvvjiC0VERLjtv+6665STk6MdO3a4xjZs2KCSkhJ16tTJ43lNJpNCQkLcHgAA4Ow2bdqkfv36KTY2Vn5+flq1apVrX3FxsR5//HG1bdtWwcHBio2N1b333qvDhw+7nSM7O1tDhgxRSEiIwsLCNGrUKOXm5tbwlQAAAACeWa1WJd83WONH36nxo+/UjCfH6eDBA7IXF3s7NABe4NUiem5urnbt2qVdu3ZJktLS0rRr1y4dPHhQxcXFuuOOO7R9+3YtX75cTqdTGRkZysjIUFFRkSTpsssuU69evXT//ffr22+/1TfffKOxY8dq0KBBio2N9eKVAQBQN+Xl5aldu3Z67bXXyuzLz8/Xzp07NXXqVO3cuVMrV67Uzz//rFtvvdXtuCFDhmj37t1at26dPv30U23atEmjR4+uqUsA6oxTZ8exOBkAAFXLZrPJnpulSf1MmjcyTKN6BMpwOuR0nv9sdAC1j1cXFt2+fbu6d+/u2p44caIkadiwYXrmmWe0evVqSdJVV13l9ryNGzeqW7dukqTly5dr7Nix6tGjh/z9/TVw4EDNnz+/RuIHahN78clVwCVV2W1oAOqf3r17q3fv3uXuCw0N1bp169zGXn31VV177bU6ePCgmjVrpj179mjt2rXatm2bOnbsKElasGCB+vTpozlz5vAjOFBBVqtVI0eP0YmCQklSY3OQ3l68iMXJAACoYvGRZiU2DZYls8DboQDwIq8W0bt16ybDMDzuP9O+UuHh4VqxYkVVhgXUOVlFRdpvseiFcSdXAc+z25WZni57aKi3QwNQxx0/flx+fn4KCwuTJG3evFlhYWGuArokJSUlyd/fX1u3btVtt93mpUiB2sVms+lEQaG6DU2WJH35bopsNhtFdAAAAKAaeLWIDqBm5DqdCnQ4NCEwUK3CwrTl2DHNdDjkZDY6gGpUWFioxx9/XHfffbdr/ZGMjAw1adLE7biAgACFh4crIyPD47nsdrvsdrtr22azVU/QQC0TERPn7RAAAACAOs+nFxYFULXigoKUGBysmKAgb4cCoI4rXRzcMAylpKSc9/lmzZql0NBQ1yM+Pr4KogQAAAAA4OwoogMAgCpVWkC3WCxat26daxa6JEVHR+vo0aNuxzscDmVnZys6OtrjOadMmaLjx4+7Hunp6dUWPwAAAAAAp6KdCwAAqDKlBfS9e/dq48aNioiIcNt/3XXXKScnRzt27FCHDh0kSRs2bFBJSYk6derk8bwmk0kmk6laYwd8XVGRnUXCAQAAAC+giA4AACosNzdX+/btc22npaVp165dCg8PV0xMjO644w7t3LlTn376qZxOp6vPeXh4uAIDA3XZZZepV69euv/++7Vo0SIVFxdr7NixGjRokGJjY711WYDPO5GTrbTU/XryuedlMplUkJ+nwxmZKi4uUsOGgd4ODwAAAKjTKKIDAIAK2759u7p37+7anjhxoiRp2LBheuaZZ7R69WpJ0lVXXeX2vI0bN6pbt26SpOXLl2vs2LHq0aOH/P39NXDgQM2fP79G4gdqq8L8PPk3bKiuQ5PVtEWi9u7apo8WzpHT6VTDht6ODgAAAKjbKKIDAIAK69atmwzD8Lj/TPtKhYeHa8WKFVUZFlBvRETHKrp5gqyHWRcAAAAAqCksLAoAAAAAAAAAgAcU0QEAAAAAAAAA8IAiOgAAAAAAAAAAHlBEBwAAAAAAAADAA4roAAAAAAAAAAB4QBEdAAAAAAAAAAAPKKIDAAAAAAAAAOABRXQAAAAAAAAAADwI8HYAAAAAAAAAQH1iLyqWxWJxbYeEhCgyMtKLEQE4E4roAAAAAAAAQA3JshVpf5pFL0wbJ5PJJEkyNYpQypsrKKQDPooiOgAAAAAAAFBDcgucCvR3aELfQLWKD1O6tUBzP8mSzWajiA74KIroAAAAAAAAQA2LiwxSYtPg37fsXo0FwJlRRAcAAABqgNVqlc1mkyRZLBY5HA4vRwQAAACgIiiiAwAAANXMarVq5OgxOlFQKEkqyM/T4YxMFRcXeTkyAAAAAGdDER2opZjNBgBA7WGz2XSioFDdhiYrIiZOe3dt00cL58jpdHo7NAAAAABnQREdqIWsVquSBw+WPStLkpRntyszPV320FAvRwYAAM4kIiZO0c0TZD2c7u1QAAAAAFSQv7cDAHDubDab7FlZmmQyaV5YmEYFBspwOORkNjoAAAAAAABQpZiJDtRi8WazEoODZSko8HYoAAAAAACgkuxFxbJYLK7tkJAQRUZGejEiAKeiiA4AAAAAAAB4SZatSPvTLHph2jiZTCZJkqlRhFLeXEEhHfARFNEBAAAAAAAAL8ktcCrQ36EJfQPVKj5M6dYCzf0kSzabjSI64CMoogMAAAAAAABeFhcZpMSmwb9v2d32Wa1W2Ww21zbtXoCaRREdAAAAAAAA8FFWq1XJ9w2WPTfLNUa7F6BmUUQHAAAAAAAAfJTNZpM9N0uT+pkUH2mm3QvgBRTRAQAAAAAAAB8XH2n22O4FQPXy93YAAAAAAAAAAAD4KoroAAAAAAAAAAB4QBEdAAAAAAAAAAAPKKIDAAAAAAAAAOABRXQAZ2W1WpWamup67Nmzx23barV6O0QAAHCK03M3uRqovzZt2qR+/fopNjZWfn5+WrVqldt+wzA0bdo0xcTEyGw2KykpSXv37nU7Jjs7W0OGDFFISIjCwsI0atQo5ebm1uBVAADgXQHeDgCAb7NarUoePFj2rCxJkr24WGmHD+uSpk0VEHDyfyGmiAilrFihyMhIb4YKAAB0MnePHD1GJwoKXWONzUF6e/EicjVQD+Xl5aldu3YaOXKkbr/99jL7X3zxRc2fP1/vvPOOEhISNHXqVPXs2VM//fSTgoKCJElDhgzRkSNHtG7dOhUXF2vEiBEaPXq0VqxYUdOXAwCAV1BEB3BGNptN9qwsTTKZFG82a8uxY5pZUKCHGzRQq7AwpRcUaG5Wlmw2G1/MAQDwATabTScKCtVtaLIiYuKUdeRXffluCrkaqKd69+6t3r17l7vPMAzNmzdPTz31lPr37y9JWrZsmaKiorRq1SoNGjRIe/bs0dq1a7Vt2zZ17NhRkrRgwQL16dNHc+bMUWxsbI1dCwAA3kI7FwAVEm82KzE4WDG/z0aJCwpSYnCw4s1mL0cGAADKExETp+jmCYqIifN2KAB8VFpamjIyMpSUlOQaCw0NVadOnbR582ZJ0ubNmxUWFuYqoEtSUlKS/P39tXXrVo/nttvtstlsbg8AAGoriugAAAAAANRDGRkZkqSoqCi38aioKNe+jIwMNWnSxG1/QECAwsPDXceUZ9asWQoNDXU94uPjqzh6AABqDkV0AAAAAABQpaZMmaLjx4+7Hunp6d4OCQCASqOIDgAAAABAPRQdHS1JyszMdBvPzMx07YuOjtbRo0fd9jscDmVnZ7uOKY/JZFJISIjbAwCA2ooiOgAAAAAA9VBCQoKio6O1fv1615jNZtPWrVt13XXXSZKuu+465eTkaMeOHa5jNmzYoJKSEnXq1KnGYwYAwBsCvB0AAN9jLy6WxWKRJFksFjkcDi9HBAAAAKAycnNztW/fPtd2Wlqadu3apfDwcDVr1kzjx4/XjBkz1LJlSyUkJGjq1KmKjY3VgAEDJEmXXXaZevXqpfvvv1+LFi1ScXGxxo4dq0GDBik2NtZLVwUAQM2iiA7ATVZRkfZbLHph3DiZTCbl2e3KTE+XPTTU26EBAAAPiors5/QDuNVqlc1mc22HhIQoMjKyWmME4B3bt29X9+7dXdsTJ06UJA0bNkxLly7VY489pry8PI0ePVo5OTnq0qWL1q5dq6CgINdzli9frrFjx6pHjx7y9/fXwIEDNX/+/Bq/FgAAvMWrRfRNmzbppZde0o4dO3TkyBF9/PHHrl+7JckwDD399NN64403lJOTo86dOyslJUUtW7Z0HZOdna1x48bpk08+cSXzv/zlL2rUqJEXrgio/XKdTgU6HJoQGKhWYWHacuyYZjoccjIbHQAAn3QiJ1tpqfv15HPPy2QyqSA/T4czMlVcXFTu8VarVSNHj9GJgkLXWGNzkN5evIhCOlAHdevWTYZheNzv5+en6dOna/r06R6PCQ8P14oVK6ojPAAAagWv9kTPy8tTu3bt9Nprr5W7/8UXX9T8+fO1aNEibd26VcHBwerZs6cKC//3gX/IkCHavXu31q1bp08//VSbNm3S6NGja+oSgDorLihIicHBijllBgoAAPA9hfl58m/YUF2HJmvgYzPVacAQlZSUyOl0lnu8zWbTiYJCdfv9+G5Dk3WioNBtZjoAAACA//HqTPTevXurd+/e5e4zDEPz5s3TU089pf79+0uSli1bpqioKK1atUqDBg3Snj17tHbtWm3btk0dO3aUJC1YsEB9+vTRnDlz6M8GAACAeiMiOlbRzRNkPZxeseNj4hTdPKGaowIAAABqP6/ORD+TtLQ0ZWRkKCkpyTUWGhqqTp06afPmzZKkzZs3KywszFVAl6SkpCT5+/tr69atNR4zAAAAAAAAAKBu8dmFRTMyMiRJUVFRbuNRUVGufRkZGWrSpInb/oCAAIWHh7uOKY/dbpfdbndtc+sqAAAAAAAAAKA8PjsTvTrNmjVLoaGhrkd8fLy3QwIAAAAAAAAkSfaiYlksFqWmpspiscjhcHg7JKBe89kienR0tCQpMzPTbTwzM9O1Lzo6WkePHnXb73A4lJ2d7TqmPFOmTNHx48ddj/T0ivWNBACgvtu0aZP69eun2NhY+fn5adWqVW77DcPQtGnTFBMTI7PZrKSkJO3du9ftmOzsbA0ZMkQhISEKCwvTqFGjlJubW4NXAQAAAPiuLFuR9qdZ9MK0cRo/+k7NeHKcDh48IHtxsbdDA+otny2iJyQkKDo6WuvXr3eN2Ww2bd26Vdddd50k6brrrlNOTo527NjhOmbDhg0qKSlRp06dPJ7bZDIpJCTE7QEAAM4uLy9P7dq102uvvVbu/hdffFHz58/XokWLtHXrVgUHB6tnz54qLCx0HTNkyBDt3r1b69at06effqpNmzZp9OjRNXUJAAAAgE/LLXAq0N+hCX0DNW9kmEb1CJThdMjpZDY64C1e7Ymem5urffv2ubbT0tK0a9cuhYeHq1mzZho/frxmzJihli1bKiEhQVOnTlVsbKwGDBggSbrsssvUq1cv3X///Vq0aJGKi4s1duxYDRo0SLGxsV66KgAA6q7evXurd+/e5e4zDEPz5s3TU089pf79+0uSli1bpqioKK1atUqDBg3Snj17tHbtWm3bts21MPiCBQvUp08fzZkzh/wNAAAA/C4uMkiJTYNlySzwdihAvefVmejbt29X+/bt1b59e0nSxIkT1b59e02bNk2S9Nhjj2ncuHEaPXq0rrnmGuXm5mrt2rUKCgpynWP58uVq3bq1evTooT59+qhLly5avHixV64HAID6LC0tTRkZGUpKSnKNhYaGqlOnTtq8ebMkafPmzQoLC3MV0CUpKSlJ/v7+2rp1a43HDAAAAADA2Xh1Jnq3bt1kGIbH/X5+fpo+fbqmT5/u8Zjw8HCtWLGiOsIDAADnICMjQ5IUFRXlNh4VFeXal5GRoSZNmrjtDwgIUHh4uOuY8tjtdtntdte2zWarqrABAAAAADgjn+2JDgAAUGrWrFkKDQ11PeLj470dEgAAAACgnqCIDtQSVqtVqampSk1NlcVikcPBgiIAfEt0dLQkKTMz0208MzPTtS86OlpHjx512+9wOJSdne06pjxTpkzR8ePHXY/09PQqjh4AAAAAgPJ5tZ0LgIqxWq1KHjxY9qwsSVKe3a7M9HTZQ0O9HBkA/E9CQoKio6O1fv16XXXVVZJOtl3ZunWrkpOTJUnXXXedcnJytGPHDnXo0EGStGHDBpWUlKhTp04ez20ymWQymar9GgAAAAAAOB1FdKAWsNlssmdlaZLJpHizWVuOHdNMh0NOZqMDqGG5ubnat2+fazstLU27du1SeHi4mjVrpvHjx2vGjBlq2bKlEhISNHXqVMXGxmrAgAGSpMsuu0y9evXS/fffr0WLFqm4uFhjx47VoEGDFBsb66WrAgAAAADAM4roQC0SbzYrMThYloICb4cCoJ7avn27unfv7tqeOHGiJGnYsGFaunSpHnvsMeXl5Wn06NHKyclRly5dtHbtWgUFBbmes3z5co0dO1Y9evSQv7+/Bg4cqPnz59f4tQD1SVGRXRaLRZJoCwcAAACcI4roAACgwrp16ybDMDzu9/Pz0/Tp0zV9+nSPx4SHh2vFihXVER6AcpzIyVZa6n49+dzzMplMKsjP0+GMTBUXF3k7NAAAfIrVapXNZpPk+z8624uKXT+QS1JISIgiIyO9GBFQt1FEBwAAAOqwwvw8+TdsqK5Dk9W0RaL27tqmjxbOkdPp9HZoAAD4DKvVquT7Bsue+/taZPl2ZWaky17se2uRZdmKtD/NohemjXOtG2RqFKGUN1dQSAeqCUV0AFXu1F/vJX4RBwDAF0RExyq6eYKsh9O9HQoAAD7HZrPJnpulSf1Mio80a8ueY5q5zCGn0/dmo+cWOBXo79CEvoFqFR+mdGuB5n6SJZvNxndvoJpQRAdQpaxWq5IHD5Y9K8s1ZoqIUMoKfhEHAAAAAPi2+EizEpsGy5Lp+2uRxUUGKbFp8O9bdq/GAtR1FNEBnDd7cbHbYmV5mZl6PDhY8Waz0gsKNDeLX8QBAAAAAABQO1FEB3BesoqKtN9i0QvjTvZiy7PblZmeribt2ikx+PdfxO38Ig4AAAAAAIDayd/bAQCo3XKdTgU6HJoQGKh5YWEaFRgow+GQ04dXMQcAAAAAAAAqiiI6gCoRFxSkxOBgxQQFeTsUAAAAAAAAoMpQRAcAAAAAAAAAwAOK6AAAAAAAAAAAeEARHQAAAAAAAAAADyiiAwAAAAAAAADgAUV0AAAAAAAAAAA8CPB2AAAAAEBdZLVaZbPZJEkWi0UOh8PLEQEAAACoDIroAAAAQBWzWq0aOXqMThQUSpIK8vN0OCNTxcVFXo4MAAAAwLmiiA4AAABUMZvNphMFheo2NFkRMXHau2ubPlo4R06n09uhAQAAADhH9EQHAAAAqklETJyimycorEm0t0MBAAAAUEkU0QEAAAAAAAAA8IAiOgAAAAAAAAAAHlBEBwAAAAAAAADAA4roAAAAAAAAAAB4QBEdAAAAAAAAAAAPKKIDAAAAAAAAAOBBgLcDAAAAAAAAALzBarXKZrPJYrHI4XB4OxwAPooiOuDDSOYAAAAAAFQPq9Wq5PsGy56bpbx8uzIz0mUvDvV2WAB8EEV0wEdZrVYlDx4se1aW8ux2Zaanyx5KMgcAAAAAoCrYbDbZc7M0qZ9Jh34zNHOZQ04nE9gAlEURHfBRNptN9qwsTTKZdMgwNNPhkJPZ6AAAoBoUFdllsVhc2yEhIYqMjPRiRAAA1Jz4SLNKSrwdBQBfRhEd8HHxZrPI5QAAoLqcyMlWWup+Pfnc8zKZTJKkxuYgvb14EYV0AAAAQBTRAQAAgHqtMD9P/g0bquvQZDVtkaisI7/qy3dTZLPZKKIDAAAAoogOAAAAQFJEdKyimyd4OwwAAADA5/h7OwAAAAAAAAAAAHwVRXQAAAAAAAAAADyoVBF9//79VR0HAACoRuRuAABql5rK3U6nU1OnTlVCQoLMZrMSExP13HPPyTAM1zGGYWjatGmKiYmR2WxWUlKS9u7dWyPxAQDgCypVRL/kkkvUvXt3/fWvf1VhYWFVxwQAAKoYuRsAgNqlpnL37NmzlZKSoldffVV79uzR7Nmz9eKLL2rBggWuY1588UXNnz9fixYt0tatWxUcHKyePXvymQIAUG9Uqoi+c+dOXXnllZo4caKio6P1wAMP6Ntvv63q2AAAQBUhdwMAULvUVO7+97//rf79++uWW25RixYtdMcdd+jmm292vZZhGJo3b56eeuop9e/fX1deeaWWLVumw4cPa9WqVVUeDwAAvqhSRfSrrrpKf/nLX3T48GG9/fbbOnLkiLp06aIrrrhCL7/8sqxWa1XHCQAAzgO5GwCA2qWmcvf111+v9evX65dffpEkff/99/r666/Vu3dvSVJaWpoyMjKUlJTkek5oaKg6deqkzZs3ezyv3W6XzWZzewAAUFud18KiAQEBuv322/XBBx9o9uzZ2rdvnx599FHFx8fr3nvv1ZEjR6oqTgAAUAXI3QAA1C7VnbufeOIJDRo0SK1bt1bDhg3Vvn17jR8/XkOGDJEkZWRkSJKioqLcnhcVFeXaV55Zs2YpNDTU9YiPjz+vOAEA8KbzKqJv375dDz74oGJiYvTyyy/r0UcfVWpqqtatW6fDhw+rf//+VRUnAACoAuRuAABql+rO3e+//76WL1+uFStWaOfOnXrnnXc0Z84cvfPOO+d13ilTpuj48eOuR3p6+nmdDwAAbwqozJNefvllLVmyRD///LP69OmjZcuWqU+fPvL3P1mTT0hI0NKlS9WiRYuqjBUAAFQSuRsAgNqlpnL35MmTXbPRJalt27ayWCyaNWuWhg0bpujoaElSZmamYmJiXM/LzMzUVVdd5fG8JpNJJpPpvGIDAMBXVKqInpKSopEjR2r48OFuSfRUTZo00VtvvXVewQEAgKpB7gYAoHapqdydn5/vKsyXatCggUpKSiSdLNZHR0dr/fr1rqK5zWbT1q1blZycfF6vDQBAbVGpIvrevXvPekxgYKCGDRtWmdO7OJ1OPfPMM/rrX/+qjIwMxcbGavjw4Xrqqafk5+cn6eRK4U8//bTeeOMN5eTkqHPnzkpJSVHLli3P67UBAKhLaip3AwCAqlFTubtfv36aOXOmmjVrpjZt2ui7777Tyy+/rJEjR0qS/Pz8NH78eM2YMUMtW7ZUQkKCpk6dqtjYWA0YMOC8XhsAgNqiUkX0JUuWqFGjRrrzzjvdxj/44APl5+dX2Rfw2bNnKyUlRe+8847atGmj7du3a8SIEQoNDdXDDz8sSXrxxRc1f/58vfPOO65k3rNnT/30008KCgqqkjgAAKjtaip3AwCAqlFTuXvBggWaOnWqHnzwQR09elSxsbF64IEHNG3aNNcxjz32mPLy8jR69Gjl5OSoS5cuWrt2Ld+5gVrKarXKZrO5tkNCQhQZGenFiADfV6mFRWfNmqWLLrqozHiTJk30/PPPn3dQpf7973+rf//+uuWWW9SiRQvdcccduvnmm/Xtt99KOjkLfd68eXrqqafUv39/XXnllVq2bJkOHz6sVatWVVkcAADUdjWVuwEAQNWoqdzduHFjzZs3TxaLRQUFBUpNTdWMGTMUGBjoOsbPz0/Tp09XRkaGCgsL9cUXX6hVq1ZVFgOAmmO1WpV832CNH32n65F832BZrVZvhwb4tEoV0Q8ePKiEhIQy482bN9fBgwfPO6hS119/vdavX69ffvlFkvT999/r66+/Vu/evSVJaWlpysjIUFJSkus5oaGh6tSpkzZv3uzxvHa7XTabze0BAEBdVlO5G6jvrFarUlNTZbFY5HA4vB0OgFqM3A2gOthsNtlzszSpn0nzRoZpUj+T7LlZ1MaAs6hUO5cmTZrohx9+KLMK+Pfff6+IiIiqiEuS9MQTT8hms6l169Zq0KCBnE6nZs6cqSFDhkiSMjIyJElRUVFuz4uKinLtK8+sWbP07LPPVlmcAAD4uprK3UB9ZrVaNXL0GJ0oKFRBfp4OZ2SquLjI22EBqKXI3QCqyqntW0p/6I+PDFNi0+Dfj7B7LziglqjUTPS7775bDz/8sDZu3Cin0ymn06kNGzbokUce0aBBg6osuPfff1/Lly/XihUrtHPnTr3zzjuaM2eO3nnnnfM675QpU3T8+HHXIz09vYoiBgDAN9VU7nY6nZo6daoSEhJkNpuVmJio5557ToZhuI4xDEPTpk1TTEyMzGazkpKSKrR4GuDrbDabThQUqtvQZHUaMEQlJSVyOp3eDgtALVVTuRtA3XZ6+5YZT47TwYMHZC8u9nZoQK1SqZnozz33nA4cOKAePXooIODkKUpKSnTvvfdWaW+2yZMn64knnnB9QGjbtq0sFotmzZqlYcOGKTo6WpKUmZmpmJgY1/MyMzN11VVXeTyvyWSSyWSqsjgBAPB1NZW7WRQckCJi4lRyyg9HAFAZNZW7AdRtp7ZviY80a8ueY5q5zCGnk7ZzwLmoVBE9MDBQ//d//6fnnntO33//vcxms9q2bavmzZtXaXD5+fny93efLN+gQQOVlJRIkhISEhQdHa3169e7iuY2m01bt25VcnJylcYCAEBtVlO5+9RFwSWpRYsW+tvf/uZxUXBJWrZsmaKiorRq1Spm1gEA8Luayt0A6gZ7UbEsFotrOyQkRJGRka7t+EizEpsGy5JZ4I3wgFqvUkX0Uq1atarWFbn79eunmTNnqlmzZmrTpo2+++47vfzyyxo5cqSkkyuEjx8/XjNmzFDLli1ds9liY2M1YMCAaosLAIDaqrpz9/XXX6/Fixfrl19+UatWrVyLgr/88suSzr4ouKciut1ul93+v16NLHwEVK+iIrvHL+Kn9lU9fR+AqlfduRtA7ZdlK9L+NItemDbO1XnB1ChCKW+u8HJkQN1RqSK60+nU0qVLtX79eh09etQ1M7zUhg0bqiS4BQsWaOrUqXrwwQd19OhRxcbG6oEHHtC0adNcxzz22GPKy8vT6NGjlZOToy5dumjt2rXcDg4AwClqKnezKDhQ+53IyVZa6n49+dzzri/ijc1BenvxIklyLZ5aqnQfhXSgatVU7gZQ++UWOBXo79CEvoFqFR+mdGuB5n6SxcQToApVqoj+yCOPaOnSpbrlllt0xRVXyM/Pr6rjkiQ1btxY8+bN07x58zwe4+fnp+nTp2v69OnVEgMAAHVBTeXuUxcFb9OmjXbt2qXx48crNjZWw4YNq/R5p0yZookTJ7q2bTab4uPjqyJkAKcpzM+Tf8OG6jo0WU1bJCrryK/68t0U1xfx0sVTI2Li3PZRRAeqVk3lbgB1R1xkkBKbBv++ZT/jsQDOTaWK6O+9957ef/999enTp6rjAQAA1aCmcjeLggN1R0R0rKKbJ5S/LybO4z4AVYPv3QAA+A7/sx9SVmBgoC655JKqjgUAAFSTmsrd57IoeKnSRcGvu+66ao8PAIDagu/dAAD4jkoV0SdNmqS//OUvMgyjquMBAADVoKZyd+mi4P/4xz904MABffzxx3r55Zd12223SXJfFHz16tX68ccfde+997IoOAAAp+F7NwAAvqNS7Vy+/vprbdy4UWvWrFGbNm3UsGFDt/0rV66skuAAAEDVqKnczaLgAABUDb53AwDgOypVRA8LC3PNKANQeVar1W217JCQkHqxKNep1322a66v7xFQ1Woqd7MoOAAAVYPv3QDOh72oWBaLRZLkcDi8HA1Q+1WqiL5kyZKqjgOod6xWq5IHD5Y9K8s1ZoqIUMqKFXW6SHz6dZ/pmuvrewRUB3I3AAC1C7kbQGVl2Yq0P82iF6aNk8MpZWaky14c6u2wgFqtUj3RpZO/Yn3xxRd6/fXXdeLECUnS4cOHlZubW2XBAXWZzWaTPStLk0wmzQsL0ySTSfasLLdZ13XRqdd9tmuur+8RUF3I3QAA1C7kbgCVkVvgVKC/QxP6BmpUj0AZToecTmajA+ejUjPRLRaLevXqpYMHD8put+uPf/yjGjdurNmzZ8tut2vRokVVHSdQZ8WbzUoMDj65Ybd7N5gaFG82n/xDBa65vr5HQFUidwMAULuQuwGcr7jIIJkCz/15tFUFyqpUEf2RRx5Rx44d9f333ysiIsI1ftttt+n++++vsuAAAEDVIHcD1ePUL5kWi4WeowCqDLkbgDdYrVYl3zdY9txT2qo2ilDKm7RVRf1WqSL6V199pX//+98KDHT/OatFixY6dOhQlQQGAACqDrkbqHpWq1UjR4/RiYJCSVJBfp4OZ2SquLjIy5EBqAvI3QC8wWazyZ6bpUn9TIqPNCvdWqC5n5xsq0oRHfVZpYroJSUlcjqdZcZ//fVXNW7c+LyDAgAAVYvcDVQ9m82mEwWF6jY0WRExcdq7a5s+Wjin3P/WAOBckbuB6sFdZBUTH2lWYtPf26qKtqpApYroN998s+bNm6fFixdLkvz8/JSbm6unn35affr0qdIAAQDA+SN3A+Wrip6fETFxim6eIOvh9KoOD0A9Ru4Gqt7prUry8u3KzEiXvTjUy5EB8HWVKqLPnTtXPXv21OWXX67CwkINHjxYe/fu1UUXXaS//e1vVR0jAAA4T+RuoKzT27FIUmNzkN5evIjblQF4HbkbqHqntyrZsueYZi5zyOlkNjqAM6tUET0uLk7ff/+93nvvPf3www/Kzc3VqFGjNGTIEJnN5qqOEQAAnCdyN1DW6e1Yso78qi/fTaHnJwCfQO4Gqk9pqxJLZoG3QwFQS1SqiC5JAQEBuueee6oyFgAAUI3I3UD5StuxoHKKiuyyWCyu7cq0xAFQPnI3AAC+oVJF9GXLlp1x/7333lupYACARV6A6kHuBlAdTuRkKy11v5587nmZTCZJtMQBqgq5GwAA31GpIvojjzzitl1cXKz8/HwFBgbqggsuIJkDqBSr1arkwYNlz/p9kRe7XZnp6bKHssgLcL7I3QDOx6mzzU/9gbswP0/+DRuq69BkNW2RSEscoAqRuwEA8B2VKqIfO3aszNjevXuVnJysyZMnn3dQAOonm80me1aWJplMijebteXYMc10OORkNjpw3sjdACrr1NnmJU6HDmdkqri4yO2YiOhYWuIAVYzcDQCA7/CvqhO1bNlSL7zwQplfywHgXMWbzUoMDlZMUFCZffbiYlksFqWmpio1NVVWq9ULEQJ1A7kbQEWcOtu804AhKikpkdPp9HZYQL1E7gYAwDsqvbBouScLCNDhw4er8pQA4JJVVKT9FoteGDfO1XfVFBGhlBUruGUcqCRyN4CKioiOVWBg4Dk/79T1TiQWHgXOF7kb9d255hXW3QJQFSpVRF+9erXbtmEYOnLkiF599VV17ty5SgID6iKSd1mlM8uls78nuU6nAh0OTQgMVKuwMKUXFGhuVhZ9V4EKIHcD8Aar1aqRo8foREGha4yFR4GKIXcDZVmtViXfN1j23CzXmKlRhFLeLH9i1enH5+XblZmRLnsx624BODeVKqIPGDDAbdvPz0+RkZG66aabNHfu3KqIC6hzWDSzrNNnllf0PYkLClJicPDJDbu9BiIFaj9yNwBvsNlsOlFQqG5DkxURE8fCo8A5IHcDZdlsNtlzszSpn0nxkWalWws09xPPE6tOP37LnmOaucwhp5MJbQDOTaWK6CUlJVUdB1DnsWhmWafPLOc9AaoPuRuAN0XExLHwKHCOyN2AZ/GRZiU2/X1ildwnVpV3B3h8ZJgSmwbLkllQw5HWDvaiit8hDtRXVdoTHajvKtKbrXTRTEsBybtU6cxy3hMAAAAAQGXRvuXcZdmKtD/Nohem/X6HOO8ZUK5KFdEnTpxY4WNffvnlyrwEUOuc3q5FYtFLAL6D3A0AQO1C7gbOHe1bzl1ugVOB/g5N6BuoVvFhvGeAB5Uqon/33Xf67rvvVFxcrEsvvVSS9Msvv6hBgwa6+uqrXcf5+flVTZRALXB6uxYWvQTgS8jdAADULuRuoPJK273QvqXi4iKDeM+AM6hUEb1fv35q3Lix3nnnHV144YWSpGPHjmnEiBG64YYbNGnSpCoNEqhNStu1SGLRy9/Zi+mvBngbuRsAgNqF3A0AgO+oVBF97ty5+vzzz12JXJIuvPBCzZgxQzfffDPJHIBLVlGR9lssemHc7/3V7HZlpqfLHkp/NaAmkbsBAKhdyN0AAPgO/8o8yWazyWq1lhm3Wq06ceLEeQcFoO7IdToV6HBoQmCg5oWFaVRgoAyHQ05mowM1itwNAEDtQu4GAMB3VKqIftttt2nEiBFauXKlfv31V/3666/66KOPNGrUKN1+++1VHSOAOiAuKEiJwcGKCQrydihAvUTuBgCgdiF3AwDgOyrVzmXRokV69NFHNXjwYBUXF588UUCARo0apZdeeqlKAwQAAOeP3A0AQO1C7gYAwHdUqoh+wQUXaOHChXrppZeUmpoqSUpMTFRw6WKKAADAp5C7AQCoXcjdAAD4jkq1cyl15MgRHTlyRC1btlRwcLAMw6iquIB6yV5cLIvFotTUVFksFjnoGw6gipG7AQCoXcjdAAB4X6VmomdlZemuu+7Sxo0b5efnp7179+riiy/WqFGjdOGFF2ru3LlVHSdQ52UVFWm/xaIXxo2TyWRSnt2uzPR02UNDvR0agDqA3A2gphQV2WWxWCSJSQHAeSB3AwDgOyo1E33ChAlq2LChDh48qAsuuMA1/qc//Ulr166tsuCA+iTX6VSgw6EJgYGaFxamUYGBMhwOOfniCaAKkLsB1IQTOdlKS92vJ597XqMeelhTnpkuy8GDKi4u8nZoQK1D7gYAwHdUaib6559/rs8++0xxcXFu4y1btnTNOgFQOXFBQUoMDpaloMDboQCoQ8jdQNWwWq2y2WySmGVdnsL8PPk3bKiuQ5PVtEWi9u7apo8WzpHT6fR2aECtQ+4GAMB3VKqInpeX5/ZLeKns7GyZTKbzDgoAAFQtcjdw/qxWq0aOHqMTBYWSpIL8PB3OyGSWdTkiomMV3TxB1sPp3g4FqLXI3QAA+I5KtXO54YYbtGzZMte2n5+fSkpK9OKLL6p79+5VFhwAAKga5G7g/NlsNp0oKFS3ocka+NhMdRowRCUlJcyyBlAtyN0AAPiOSs1Ef/HFF9WjRw9t375dRUVFeuyxx7R7925lZ2frm2++qeoYAQDAeSJ3A1UnIiaOWdYAql1N5u5Dhw7p8ccf15o1a5Sfn69LLrlES5YsUceOHSVJhmHo6aef1htvvKGcnBx17txZKSkpatmyZZXGAQCAr6rUTPQrrrhCv/zyi7p06aL+/fsrLy9Pt99+u7777jslJiZWdYwAAOA8kbsBAKhdaip3Hzt2TJ07d1bDhg21Zs0a/fTTT5o7d64uvPBC1zEvvvii5s+fr0WLFmnr1q0KDg5Wz549VVhYWGVxAADgy855JnpxcbF69eqlRYsW6cknn6yOmAAAQBUidwMAULvUZO6ePXu24uPjtWTJEtdYQkKC68+GYWjevHl66qmn1L9/f0nSsmXLFBUVpVWrVmnQoEHVGh8AAL7gnGeiN2zYUD/88EN1xAIAAKoBuRuoPKvVqtTUVKWmpspiscjhcHg7JAD1QE3m7tWrV6tjx46688471aRJE7Vv315vvPGGa39aWpoyMjKUlJTkGgsNDVWnTp20efPmGokRAABvq1Q7l3vuuUdvvfVWVccCAACqCbkbOHdWq1UjR4/RqIce1qiHHtaUZ6bLcvCgiouLvB0agHqgpnL3/v37Xf3NP/vsMyUnJ+vhhx/WO++8I0nKyMiQJEVFRbk9LyoqyrWvPHa7XTabze0BVAd7UbEsFgs/eAOoVpVaWNThcOjtt9/WF198oQ4dOig4ONht/8svv1wlwQEAgKpB7gbOnc1m04mCQnUbmqyImDjt3bVNHy2cI6fT6e3QANQDNZW7S0pK1LFjRz3//POSpPbt2+s///mPFi1apGHDhlX6vLNmzdKzzz5bJTECnmTZirQ/zaIXpo2TyWRSXr5dmRnpsheHejs0AHXMORXR9+/frxYtWug///mPrr76aknSL7/84naMn59f1UUHAADOC7kbOH8RMXGKbp4g6+F0b4cCoB6o6dwdExOjyy+/3G3ssssu00cffSRJio6OliRlZmYqJibGdUxmZqauuuoqj+edMmWKJk6c6Nq22WyKj4+vsrgBScotcCrQ36EJfQPVKj5MW/Yc08xlDjmdzEYHULXOqYjesmVLHTlyRBs3bpQk/elPf9L8+fPL3NZVlQ4dOqTHH39ca9asUX5+vi655BItWbJEHTt2lHRykZOnn35ab7zxhnJyctS5c2fXrWgAANR33sjdAACg8mo6d3fu3Fk///yz29gvv/yi5s2bSzq5yGh0dLTWr1/vKprbbDZt3bpVycnJHs9rMplkMpmqJWbgdHGRQUpsGixLZoG3QwFQR51TT3TDMNy216xZo7y8vCoN6FTHjh1T586d1bBhQ61Zs0Y//fST5s6dqwsvvNB1zIsvvqj58+dr0aJF2rp1q4KDg9WzZ08VFhZWW1wAANQWNZ27AQDA+anp3D1hwgRt2bJFzz//vPbt26cVK1Zo8eLFeuihhySdnPU+fvx4zZgxQ6tXr9aPP/6oe++9V7GxsRowYEC1xQUAgC+pVE/0Uqcn96o2e/ZsxcfHa8mSJa6xhIQEt9efN2+ennrqKfXv31+StGzZMkVFRWnVqlUaNGhQtcYHAEBtU925GwAAVK3qzt3XXHONPv74Y02ZMkXTp09XQkKC5s2bpyFDhriOeeyxx5SXl6fRo0crJydHXbp00dq1axUUFFStsQEA4CvOaSa6n59fmd5r1dlHdfXq1erYsaPuvPNONWnSRO3bt9cbb7zh2p+WlqaMjAwlJSW5xkJDQ9WpUydt3rzZ43lZJRwAUF/UdO6WTrZiu+eeexQRESGz2ay2bdtq+/btrv2GYWjatGmKiYmR2WxWUlKS9u7dW60xAQBQW3gjd/ft21c//vijCgsLtWfPHt1///1lXn/69OnKyMhQYWGhvvjiC7Vq1apaYwIAwJec00x0wzA0fPhwV1+zwsJCjRkzpswq4StXrqyS4Pbv36+UlBRNnDhRf/7zn7Vt2zY9/PDDCgwM1LBhw5SRkSFJZXrDRUVFufaVh1XCAQD1RU3n7tJWbN27d9eaNWsUGRmpvXv3ltuK7Z133lFCQoKmTp2qnj176qeffmJGGwCg3qvp3A0AAM7unIrow4YNc9u+5557qjSY05WUlKhjx456/vnnJUnt27fXf/7zHy1atKhMLOeCVcIBAPVFTeduWrEBAHB+ajp3AwCAszunIvqpX4hrQkxMjC6//HK3scsuu0wfffSRJCk6OlqSlJmZqZiYGNcxmZmZrlXDy8Mq4agp9uJiWSwWSZLFYpHD4fByRADqm5rO3atXr1bPnj1155136l//+peaNm2qBx980HVb+NlasVFEBwDUdzWduwEAwNmd18Ki1a1z5876+eef3cZ++eUXNW/eXNLJmW3R0dFav369q2hus9m0detWJScn13S4gJusoiLtt1j0wrhxMplMyrPblZmeLntoqLdDA4BqU12t2Ox2u+x2u2ub9UwAAAAAADXFp4voEyZM0PXXX6/nn39ed911l7799lstXrxYixcvlnRycZPx48drxowZatmypauvamxsrAYMGODd4FHv5TqdCnQ4NCEwUK3CwrTl2DHNdDjkZDY6gDqsulqxsZ4JAAAAAMBb/L0dwJlcc801+vjjj/W3v/1NV1xxhZ577jnNmzdPQ4YMcR3z2GOPady4cRo9erSuueYa5ebmau3atSxMBp8RFxSkxOBgxfBvEkA94KkV28GDByW5t2I7VWZmpmtfeaZMmaLjx4+7Hunp6VUcOQAAAAAA5fPpmeiS1LdvX/Xt29fjfj8/P02fPl3Tp0+vwagAAEB5qqsVG+uZAAAAAAC8xeeL6AAAoPagFRsAAAAAoK6hiA4AAKpMaSu2KVOmaPr06UpISCi3FVteXp5Gjx6tnJwcdenShVZsAAAAAACfRREdAABUKVqxAQAAAADqEp9eWBQAAAAAAAAAAG9iJjoAAADwu6IiuywWiyTJYrHI4XB4OSIAAAAA3kYRHQAAAJB0Iidbaan79eRzz8tkMqkgP0+HMzJVXFzk7dAAAAAAeBFFdAAAAEBSYX6e/Bs2VNehyWraIlF7d23TRwvnyOl0ejs0AAAAAF5ET3QAAADgFBHRsYpunqCwJtHeDgUAAACAD6CIDgAAAAAAAACAB7RzAQAAAAAAAFAue1Gxa+F1SSoqKlJgYKBrOyQkRJGRkd4IDagxFNEBAAAAAAAAlJFlK9L+NItemDZOJpNJ9qJipR08rEtaNFVAwMmyoqlRhFLeXEEhHXUaRXQAAAAAAAAAZeQWOBXo79CEvoFqFR+mLXuOaeayAj3cu4FaxYcp3VqguZ9kyWazUURHnUYRHQAAAAAAAIBHcZFBSmwaLEtmgdv2SXbvBQbUEBYWBQAAAAAAAADAA4roAAAAAAAAAAB4QDsXAAAAADWmqMgui8VyynaRAgMDXdshISH0VAUAAIBPoYgOAAAAoEacyMlWWup+Pfnc8zKZTCoqsiv9wAE1vzhRAQEnv5o0Ngfp7cWLKKQDAADAZ1BEB86R1WqVzWaTxEwpX3Tq34/E3xEAAL6kMD9P/g0bquvQZDVtkai9u7bJsnCOugweraYtEpV15Fd9+W6KbDYb+RsAAAA+gyI6cA6sVquSBw+WPStLkmSKiFDKihV8yfMRp//9SPwdAQDgiyKiYxXdPEHWw+lu2wAAAIAvYmFR4BzYbDbZs7I0yWTSJJNJ9qwst1nP8K5T/37mhYXxdwQAAAAAAIDzxkx0oBLizeaTf7DbvRsIyhVvNisxOPjkBn9HAAAAAAAAOA/MRAcAAAAAAAAAwAOK6AAAAAAAAAAAeEARHQAAAAAAAAAAD+iJDgAAAAAAAJ9ktVpls9kkSRaLRQ6Hw8sRAaiPKKIDAAAAAADA51itViXfN1j23CxJUl6+XZkZ6bIXh3o5MgD1DUV0ALWavbhYFotFErMSAAAAAKAusdlssudmaVI/k+Ijzdqy55hmLnPI6eR7H4CaRREdQK2VVVSk/RaLXhg3TiaTSXl2uzLT02UPZVYCAAAAANQV8ZFmJTYNliWzwNuhAKinWFgUQK2V63Qq0OHQhMBAzQsL06jAQBkOh5zMRgcAAAAAAEAVoYgOoNaLCwpSYnCwYoKCvB0KAAAAAAAA6hiK6AAAAAAAAAAAeEARHQAAAAAAAAAADyiiAwAAAAAAAADgAUV0AAAAAAAAAAA8CPB2AAAAAABQqqjILovFIkkKCQlRZGSklyMCAABAfUcRHQAAAIBPOJGTrbTU/XryuedlMpnU2ByktxcvopAOAIAPsxcV8wM46jyK6AAAAAB8QmF+nvwbNlTXockKMpn05bspstlsfBkHAMBHZdmKtD/NohemjZPJZJKpUYRS3lxB7kadQ090AAAAAD4lIjpWETFx3g4DAACcRW6BU4H+Dk3oG6hJ/Uyy52bJZrN5OyygyjETHQAAAAAAAEClxUUG6YIgsyS7t0MBqgUz0QEAAAAAAAAA8IAiOnAaq9Wq1NRU18NqtXo7JAAAAACoES+88IL8/Pw0fvx411hhYaEeeughRUREqFGjRho4cKAyMzO9FyQAADWMdi7AKaxWq5IHD5Y9K8s1ZoqIUMoKFsUAAAAAULdt27ZNr7/+uq688kq38QkTJugf//iHPvjgA4WGhmrs2LG6/fbb9c0333gpUgAAahYz0YFT2Gw22bOyNMlk0rywME0ymWTPYlEMAAAAAHVbbm6uhgwZojfeeEMXXniha/z48eN666239PLLL+umm25Shw4dtGTJEv373//Wli1bvBgxAAA1hyI6UI54s1mJwcGKN5vPeJy9uFgWi0WpqamyWCxyOBw1FCEAAAAAVJ2HHnpIt9xyi5KSktzGd+zYoeLiYrfx1q1bq1mzZtq8eXNNhwkAgFfQzgWopKyiIu23WPTCuHEymUzKs9uVmZ4ue2iot0MDAAAAgAp77733tHPnTm3btq3MvoyMDAUGBiosLMxtPCoqShkZGR7PabfbZbfbXdvc3QsAqM1q1Ux0FjiBL8l1OhXocGhCYKDmhYVpVGCgDIdDTmaj+5RT7xZgkVgAqJ9OXTR8z549rj9zFxkASOnp6XrkkUe0fPlyBQUFVdl5Z82apdDQUNcjPj6+ys4NAEBNqzUz0VngBL4qLihIicHBshQUeDsUnOb0uwVYJBYA6h+r1aqRo8foREGhiorsSj9wQM0vTlRAQIAK8vN0OCNTxcVF3g4TALxmx44dOnr0qK6++mrXmNPp1KZNm/Tqq6/qs88+U1FRkXJyctxmo2dmZio6OtrjeadMmaKJEye6tm02G4V0AECtVStmorPACYDKOPVuARaJBbyDu8jgbTabTScKCtVtaLI69v2TSvwbqMvg0Rr42Ex1GjBEJSUlcjqd3g4TALymR48e+vHHH7Vr1y7Xo2PHjhoyZIjrzw0bNtT69etdz/n555918OBBXXfddR7PazKZFBIS4vYASp16l1h5dw2X7ueuMQC+olbMRD91gZMZM2a4xs+2wMkf/vCHcs9HbzagfokLCtIFZrN0yn/3AKofd5HBl0TExKnEME7+OTpW0c0TZD2c7uWoAMD7GjdurCuuuMJtLDg4WBEREa7xUaNGaeLEiQoPD1dISIjGjRun6667zuN3buBMrFarku8bLHtulmvM1ChCKW+evGv41P15+XZlZqTLXszaYwC8y+dnopcucDJr1qwy+yq7wAm92QAAqF7cRQYAQN3xyiuvqG/fvho4cKBuvPFGRUdHa+XKld4OC7WUzWaTPTdLk/qZNG9kmCb1M8me+7+7hk/dP6pHoAynQ04ns9EBeJdPF9Gra4GTKVOm6Pjx465HejqzkAAAqEqn3kV2qrPdReaJ3W6XzWZzewAAgOrx5Zdfat68ea7toKAgvfbaa8rOzlZeXp5Wrlx5xn7oQEXER5qV2DRY8ZFm2YuKZbFY3Fq4xEeaFRNedbUgADgfPt3OpboWODGZTDKZTNUZOgAA9VbpXWTbtm0rs+987iJ79tlnqzpUAAAAeFmWrUj70yx6Ydo4mUwmWrgA8Ek+PRO9uhY4AQAA1YO7yAAAAHAucgucCvR3aELfQM0bGUYLFwA+yadnorPACQAAtQt3kcEbrFarW4ufkJAQRUZGejEiAABwqlNzdWm7ltPFRQYpsWmwLJkFNR0eAJyVTxfRK+KVV16Rv7+/Bg4cKLvdrp49e2rhwoXeDguAD7IXn+yzV4oiC1D1Su8iO9WIESPUunVrPf7444qPj3fdRTZw4EBJ3EWG82O1WjVy9BidKCh0jTU2B+ntxYv4fzwAAD7AarUq+b7BsudmSRLtWgDUSrWuiP7ll1+6bZcucPLaa695JyAAtUJWUZH2Wyx6Ydw412xWU0SEUlasoMgCVCHuIkNNs9lsOlFQqG5DkxURE6esI7/qy3dTZLPZ+P87AAA+wGazyZ6bpUn9TIqPNGvLnmOauYx2LQBql1pXRAeAysh1OhXocGhCYKBahYUpvaBAc7OyKLIAXsBdZDhf5d0SHhETp+jmCV6ODAAAeBIfaaZdC4BaiyI6gHolLihIicHBJzfsdu8GA9QT3EWGqnR6+5aC/DwdzshUcXGRlyMDAAAAUFdRRAcAAECtcXr7lr27tumjhXPkdDq9HRoAAEC9Zy9iLTLUTRTRUe9VZJVwAADgW0rbt1gPp5fZV1Rkd315I7cDAADUjCxbkfanWfTCtFPWImsUoZQ3WYsMtR9FdNRrVqtVyYMHy571+yrhdrsy09NlD2WVcAAAaqMTOdlKS92vJ597XiaTiXYvAAAANSS3wKlAf4cm9A1Uq/gwpVsLNPcT1iJD3UARHfWazWaTPStLk0wmxZvN2nLsmGY6HHIyYw0AgFqpMD9P/g0bquvQZDVtkUi7FwAAgBoWFxmkxKa/r0Um1iJD3eDv7QAAXxBvNisxOFgxQUHeDgUAAFSBiOhYRTdPUFiTaG+HAgAAAKCWo4gOAAAAAAAAAIAHFNEBAAAAAAAAAPCAIjoAAAAAAAAAAB5QRAcAAAAAAAAAwAOK6AAAAAAAAAAAeEARHQAAAAAAAAAADyiiAwAAAAAAAADgQYC3AwB8nb24WBaLRZJksVjkcDi8HBGqi9Vqlc1mc22HhIQoMjLSixEBAAAAAADA2yiiA2eQVVSk/RaLXhg3TiaTSXl2uzLT02UPDfV2aKhiVqtVyYMHy56V5RozRUQoZcUKCukAAAAAAAD1GEV04AxynU4FOhyaEBioVmFh2nLsmGY6HHIyG73OsdlssmdlaZLJpHizWekFBZqblSWbzUYRHQAAH8VdZAAAAKgJFNGBCogLClJicLAsBQXeDgXVLN5sVmJw8MkNu927wQAAAI+sVqtGjh6jEwWFrrHG5iC9vXgRhXQAAHwUP4CjtqKIDgAAAKDWsdlsOlFQqG5DkxURE6esI7/qy3dTuIsMAAAfZbValXzfYNlzT2mj2ihCKW/SRhW+jyI6AAAAAJ9UVGR3LfAulT9bLSImTtHNE2o6NAAAcI5sNpvsuVma1M+k+Eiz0q0FmvsJbVRRO1BEBwAAAOBzTuRkKy11v5587nmZTCZJtGsBAKAuiI80K7Hp721URRtV1A4U0QEAAAD4nML8PPk3bKiuQ5PVtEUi7VoAAADgNRTRAQAAAPisiOhYV7uWU9u7WCwWORwOb4YGAACAeoIiOgAAAACfd3p7l4L8PB3OyFRxcZG3QwMAAB7Yi4r5ARx1AkV0AAAAAD7v9PYue3dt00cL58jpdHo7NAAAUI4sW5H2p1n0wrRxMplMysu3KzMjXfbiUG+HBpwzf28HAAAAAAAVVdreJaxJtLdDAQAAZ5Bb4FSgv0MT+gZq3sgwjeoRKMPpkNPJbHTUPsxER71jtVpls9kkcSsRAAAAAABAdYqLDFJi02BZMgu8HQpQaRTRUa9YrVYlDx4se1aWJCnPbldmerrsodxKBAAAAAAAAKAs2rmgXrHZbLJnZWmSyaR5YWEaFRgow+GQk9noAAAAAAAAAMpBER31UrzZrMTgYMUEBXk7FAAAAAAAAAA+jCI6AAAAAAAAAAAe0BMdQL1lLy6WxWKRVLFFZk9dlFaSQkJCFBkZWa0xAgAAAAAAwLsoogOol7KKirTfYtEL48bJZDKddZHZ0xellSRTRIRSVqygkA4AAAAAAFCHUUQHUC/lOp0KdDg0ITBQrcLCtOXYMc08wyKzpy5KG282K72gQHOzsmSz2SiiAwBQS516lxl3mAEAAMATiugA6rW4oCAlBgfLUlBQoeNLF6WVJNnt1RgZAACoTlarVSNHj9GJgkJJUmNzkN5evIhCOgAAXkQbVfgqiugAAADwKr4swRtsNptOFBSq29BkSdKX76ZwhxkAAF5ktVqVfN9g2XNPaaPaKEIpb9JGFd5HER0AAABec/psYIkZwahZETFx3g4BAADo9zaquVma1M+k+Eiz0q0FmvsJbVThGyiiAwAAwGtOnQ0cEROnrCO/MiMYAAAfd7a7yE7db7FY5PCw9hRQnvhIsxKb/t5GVbRRhW+giA4AAACvi4iJU3TzBG+HAQAAzuJsLTdO35+Xb1dmRrrsxaHeChkAzhtFdAAAAAAAAFTI2VpunL5/y55jmrnMIaeT2egAai+K6AAAAAAAADgnp7bcsBflymKxSPpf+5b4yDAlNg2WJbPAm2Gijjm1VRCL0aMmUUQHAAAAUCedrWcvAOD8ZdmKtD/NohemjZPJZKJ9C6rN6a2CTm0jBFQ3iuio81jQBAAAoP6xWq0aOXqMThQUusYam4P09uJFfNkGTjFr1iytXLlS//3vf2U2m3X99ddr9uzZuvTSS13HFBYWatKkSXrvvfdkt9vVs2dPLVy4UFFRUV6MHL4it8CpQH+HJvQNVKv4MNq3oNqc2ipIklsbIaC6UURHnWa1WpU8eLDsWb8vaGK3KzM9XfZQfhEHAACoy2w2m04UFKrb0GRFxMQp68iv+vLdFL5sA6f517/+pYceekjXXHONHA6H/vznP+vmm2/WTz/9pODgk606JkyYoH/84x/64IMPFBoaqrFjx+r222/XN9984+XoUZ3O9W6euMgg2regRsRHmn//k92rcaB+8ekiOr+I43zZbDbZs7I0yWRSvNmsLceOaabDISez0QEAAOqFiJg4RTdP8HYYgM9au3at2/bSpUvVpEkT7dixQzfeeKOOHz+ut956SytWrNBNN90kSVqyZIkuu+wybdmyRX/4wx+8ETaq2eltM6T/tc4AgPrI39sBnEnpL+JbtmzRunXrVFxcrJtvvll5eXmuYyZMmKBPPvlEH3zwgf71r3/p8OHDuv32270YNbzNarUqNTVVqamp/1vQxGxWYnCwYoKCvB0eAAAAAPis48ePS5LCw8MlSTt27FBxcbGSkpJcx7Ru3VrNmjXT5s2bvRIjqt+pbTPmjQzTpH4m2XOz3GamA0B94tMz0flFHOeK9i0A4F3cRQZPzuWW8KIiuywWyynbRQoMDJTE+iYAUJ1KSko0fvx4de7cWVdccYUkKSMjQ4GBgQoLC3M7NioqShkZGR7PZbfbZbf/r9UCxdfaKT7SrMSmwb9v0Trj/9u79+im6/uP46/ekoZbeyzFAq1QK0x2EScMpvtNqnPCHB6ZnOkZjoF2OjhQJuicOIVtHi5zMPAoFj0KisrEy5SjqDvMHfA2JhtjUweOa4mU1hgK6SX9pknz+wMakzRNmiZtLn0+zsk5fG+f76df8v28k0++n/cHQN+V1J3owaL9RZxO9L6H9C0AkFjkVUUo4SZ4DNZw6qSOHDqsX92/XGazWS6XIevRoxpxfpmys7PlbG5STW2dWltdvfknAECfMG/ePH300Ud69913Yy5rxYoV+s1vfhOHWgEAkHgp04nOL+KIRnv6lmonE5qg5xitrQFPSkaaaAfoCxhFhlDCTfAYrKW5SZk5OZo0c66GjyzTgb27Vf3IKv3fjNt8yy89skoejycBfwkApK/58+frtdde09tvv63i4mLf+qKiIrlcLp06dSrgu3ddXZ2Kioo6LW/x4sVatGiRb9nhcKikpKRH6g4AQE9LmU50fhEHkEzsLpcOV1drZWWlzGazJMlcUKCqzZvpSAf8xGsUGT+Ap4doJngsKBqmohGlstVYQy4DAOLD6/WqsrJSL7/8snbs2KHS0sB2ety4ccrJydFbb72l6dOnS5I++eQTHTt2TJdeemmn5ZrNZt/nZADoLsP1xcNrpPVDIqVEJzq/iANINo0ej0xutxaaTBqdny+r06nV9jMT7dCJDpwRz1Fk/AAOAEDPmDdvnjZv3qytW7dq4MCBvnicl5cni8WivLw8VVRUaNGiRTrnnHM0aNAgVVZW6tJLL2UEGYAeZXe4dPhItVYuOfPwWlOzobpaq4zWPJlzchJdPfQxSd2Jzi/iaBdpMrL27fwqid5WnJursrN5nmUw0Q7gL56jyPgBHACAnlFVVSVJKi8vD1i/ceNGzZ49W5K0Zs0aZWZmavr06QGTggNAT2p0emTKdGvhVJNGl+Rr1756LdvklsfjluhERy9L6k50fhGHdKaDfO6MGTLsdt86/7QZ/tubDEN1VquMvLwE1hgAEO9RZPwADgBAz/B6vRH3yc3N1bp167Ru3bpeqBEABCouzFXZ8P6qrmPeOyROZqIrEE5VVZVOnz6t8vJyDR061PfasmWLb581a9Zo6tSpmj59ui6//HIVFRXpT3/6UwJrjXhzOBwy7HbdYTZrbX6+7jCbZZxNmxG8vcJkktftloen0QEgIbxer+bPn6+XX35Zf/3rX8OOImvXlVFkAAAAAAAkSlI/ic4v4vBXYrGETZtRYrGorZfrBAAIxCgyAAAAAEC6SepOdAAAkFrIqwogmblchqqrqyWJuXQAAADQZXSiA0CcGK2tvi/mLpdLJpPJty14MlwgXTGKDECyajh1UkcOHdav7l8us9ksZ3OTamrr1NrqUk6OKXIBAAAA6LPoRAeAOLC7XDpcXa2VlZVSZqaO1NToguHDlZ19ppn1nwwXAAD0vpbmJmXm5GjSzLkaPrJMB/bu1kuPrJLH41FOTvTl2Ww23xw9Ej+YA0h/huuLh4YYyYN48X9fMUoMyYxOdACIg0aPRya3WwtNJp2UtMzp1IKsLI3Oz5fV6dTqs5Ph8uUaAIDEKigapqIRpbLVWLtdhs1m0y23zVGDs8W3bqAlVxseW0+sB5CW7A6XDh+p1sollXJ7pLpaq4zWvERXCynO/31lNpvV1Gzw3kLSohMdAOKoODdXZr9/h5sMFwAApCaHw6EGZ4vKZ85VwdBi2U98qh1PV/GDOYC01ej0yJTp1sKpJp1slJZtcsvj4YlhxMb/fTW6JF+79tXz3kLSohMdAAAAALqhYGixikaUJroaANBrigtzZWYaCcRZcWGuyob3V3WdM6rj/FPBSJFTq5GKDbGgEx0AAAAAAABAyghOBSNJ5gEFqno89FxkNptNc386Q0aj3bcu3P5AMDrRkZKMViaeAAAAAAAA6IuCU8FYbU6tfrXzucgcDoeMRrvuuNaskkJLxP2BYHSiI+XYXS4drq7WysqzE08YhuqsVhl5TDwBAECqcLkM3w/i/BgOAACA7mhPBXNG5LnISgotUe0PtKMTHSmn0eORye3WQpNJo/Pztau+Xsvcbnn4Ag4AQEpoOHVSRw4d1q/uX642j1s1tXVqbXUluloAAAAAEBKd6EhZxbm5KuvfX9XO6CaeAAAAidXS3KTMnBxNmjlXzadO6qVHVsnj8SS6Wujj/EdHSEw2BgAAgC/QiQ4AAICEKCgaJpPJlOhqAAGjI9onJxtoydWGx9bTkQ4AAAA60QGgM4mcwNZms8nhcPiWeRoOAICe4z86YvjIMtlPfKodT1cx2RgAAAAk0YkOACElcgJbm82muTNmyLDbfevMBQWq2ryZL/IAAIThn5KlOz+AFxQNU9GI0p6oGgAAAFIYnegAEEIiJ7B1OBwy7HbdYTarxGKR1enUarudp+EAAAgjOCWLs7mJSWsBAAAQF3SiA0AYiZzAtsRiUVn//mcWDKPXzw8AQCoJTslyYO9uJq0FAABAXGQmugIAAAAAEC/tKVnyhxQluioAAABIEzyJDgAAAAAAkOJsNpscDodvedCgQVGlg/Q/vjvzSgBAOqMTHQASINoPuEZrq2+itK7sDwAAAKDvsNlsmvvTGTIa7b515gEFqnp8c5e+NwQf39RsqK7WKqM1r8fqDACphE50AOhlNptNc2fMkGH3+4BbUKCqzaE/4NpdLh2urtbKykqZzeaI+wNAMuBpNgAAeo/D4ZDRaNcd15pVUmiR1ebU6lftcjgcXfrOEHz8rn31WrbJLY+H+A0AEp3oANDrHA6HDLtdd5jNKrFYZHU6tdre+QfcRo9HJrdbC00mjc7Pj7g/ACSazWbTLbfNUYOzRZLkbG5STW2dWltdCa4ZAADpraTQorLh/c8uGQHbujIatv346jpnT1cVSDqxpkRCeqMTHT3Gv/Gh4QE6KrFYVNb/zAdco7HRl66lsyc2i3NzffvLMDpsB4B4ivQlItx2h8OhBmeLymfOVcHQYh3Yu1svPbJKHo+n9/4AAADgE2u6FyDdcY8gEjrR0SOC01WQegLoXHC6libDUJ3VKiOP/IMAEiP4SXJJGmjJ1YbH1quwsDDi9nYFQ4tVNKJUthprr9YfAAAEijXdC5DuuEcQCZ3o6BH+6SokkXoCCCM4Xcuu+notc7vlIX8wgAQJfpLcfuJT7Xi6yhfLI20HAAC9o31kWFfnHwmX7gVIN5Hm6DFcrR1GhJcU5nOPICQ60dGjSiwWSYGpKiTSuwChtKdrqXaSfxBAYgR/EW9/krwzkbYD6STSF3GXy+DzLoBe5Z9+oqnZUF2tVUYro1kBqWN6luB7xO5w6fCRaq1ccnZEOPcQIqATHT0uOFWFRHoXAACSjX+KFiYCBQJFmiy34dRJHTl0WL+6f7nv826oFEcAEE/+6SeOf+7Vsk1ueTyMZgWkjulZdu2rD7hHGp0emTLdWjjVpNEl+R22A8HoREePC05VYXU6tby2Vh9++KFGjBghSXK5XDKZTL5jeHIHAIDe5Z+i5WTdCSYCBfxEmiy3pblJmTk5mjRzroaPLCPFEYBeVVJoUVtbomsBJKf2FEbVdaFHfBcX5obdDrSjEx29pj1VRfCT6UZrq47U1OiC4cOVnX3mLcmT6gAAJEbB0GK1eb0d1vunquhq3lUg3USaLLegaJgvxRHpXQAAANIHnejodSEnUXQ6tSAry/ekOhORAgCQPIJTVZDuBQiP9C4AkkGoSROBdMZ7Hj2JTnQkTPAkiu3LkiSDGZABAEgWwakqglNZAAhEehcAicakiehreM+jp9GJDgAAgC5pT1XRWSoLAIH807sAQG9i0kT0Nbzn0dMyE10BAAAAAAAAxF/7pIlDz8lNdFWAXsF7Hj2FJ9EBAAAAIEi8J9P1L49JRgEAAFILnegAAAAA4Cfek+kGl8ckowAAAKmFTnQAAAAA8BPvyXT9y8s1m5lkFECX2Ww2ORwO37LL5ZLJZJIU+ygZw9Ua1xE3QLrxv0f87z2JUWV9EZ3o6LYeDeatBHOkF97TAJJBcOyO54f/eKe+AJJBvCfTLSgaptxcS1zKApD+bDab5v50hoxGu6QzHXpHjtXogpHDlZ2draZmQ3W1VhmteVGXbXe4dPhItVYuqZTZbI6pLCAd+d8jysgMuPckyTygQFWPb6YjvQ+hEx3dYrPZNHfGDBn2s8G8tVVHamp0wfCzwdwwVGe1ysjrRjB3uXS4ulorK88G8xjKApIB72kAycBms+mW2+aowdniWxevlBLxTn0BAAAkh8Mho9GuO641q6TQol376rVsk1MLvpel0SX5Z5fd8nii/+G60emRKdOthVNNMZcFpCP/e+RkowLuPavNqdWv2hlV1sfQiY5ucTgcMux23WE2q8Ri0a76ei1zOrUgK0uj8/PPLLvd8nTjKbRGj0cmt1sLTaaYywKSAe9pAMnA4XCowdmi8plzVTC0WPYTn8YtpUS8U18AAIAvlBRaVDa8v6rrnJKk4sLcgOVYxLMsIB0VF+bKbPri32XD+5/dYoQ9ridHgCIx6ERHTEosFpX1769q59lgnpsbsByLeJYFJIN4vqf908ME52aLlKuNYA70bQVDi1U0olRS/FOwxDv1BZCu/O89iVgMAEA6CU7FJJH+JR3QiQ4AKcY/PYwyMwNSKQWnVpIkc0GBqjafCdbBqZiCtwPoO0jBAiRG8L0nxS+1EgAASLzgVEykf0kPdKKnOZ44BdKPf3qYk1LHVEp+y1anU8tra/Xhhx9qxIgRqq6uVlNdnX7Zv79KLBZZnU6tthPMgb6IFCxAYgTfe/FMrQQgMfjeDfQ9hqs14qiy9lRMZ/ZvZBRaiqMTPY3xxCmQ3opzc2X2+3eo1EqdTWo6ZOxYlfU/m8vNCJ/LDUDv6u0v4qRgARKj/d6TOqZ3iZSqLVLqNgC9h7QNQN9jd7h0+Ei1Vi6p9I0qC3ffR7s/khOd6GksePJPnjgF+h4mNQVSi81m0y23zVGDs8W3jjQPQHoLTu/ichmyHj2qEeeXKTs7O+KyRDsBJBJpG4C+p9HpkSnTrYVTTRpdkh/xvo92fyQnOtF7QLIN5Wqf/FNSVE+cJtvfAaD7wk1q6j9JqRT+XqddAHqWw+FQg7NF5TPnqmBocYc0D9yDQPoJlVqp+pFV+r8Zt3VpmXQwQHLwT9sgffG9m9gNpK/iwtyQ6Vqqq6vlDvHgmv/+/u1EMNqN5EQnepylSwqVdPk7AIQXnO5F6vxep10Aek/B0GJfmod2PKUOpLfg1EpdXQaQvEj1AvQNwelampoN1dVaZbTmRV0W7Ubyykx0BeJl3bp1GjlypHJzczVx4kR98MEHCamHfwqVtfn5usNslnE2hUoqSZe/A0B4/uleIt3rtAuIt2SJ3anC/yn16XctU/nMuWpwtnAPAgB6DbE7Ov6pXtbekq87rjXLaOTzM5Bu/NO1rL0lXxXfMcnrccvjiT6NKu1G8kqLJ9G3bNmiRYsWaf369Zo4caLWrl2ryZMn65NPPtGQIUMSUqdwKVSiGZYRad/g7f6TDIUaPuKftqErExL5/x1GY+ShKQBSU3u6FynwXpc6tg3xat9C8T8+UnsX7faexHC76CVb7A4XT0MtR/N/HKnsSGX5TzjodrtDPqXelXMRu4H0FW5i0khtTjxjd7TtG7E7tRC7u16W4WoNiN0lhfmdpnAgdgPpoz1dS3VdxzSqwfzbCSnE9+5OUkRJfO9OxLmlNOlE/8Mf/qBbb71VN998syRp/fr12rZtmzZs2KC77747wbULFE06hEj7Bm83Wlt1pKZGFwwfruzsbDUZhuqsVhl5Z4aP+KdtUGZmwL7h6hF8rNls7lA2gPQQLr1LJLGmewk+Plx7F+32nkSam+5JptgdnCYlnpP4RSo7Uln+Ew62edyqqa1Ta6urW+dyNjeFPR5Aago3MWlbmydsmxNrmij/46Nt3xKZoor0WN2TbLHbP92B4WrVkWM1umDkme+3wctS19MhRCo7Uln+aR3cHoVN6RDpXLGkhACQvILTv0hftCuRxJruJfh4/2MjlZ3IVDPJkOYm5TvRXS6X/vnPf2rx4sW+dZmZmbrqqqv0t7/9LYE1C80/HUKJxSKr06nV9tAz8kbaN3j7rvp6LXM6tSArS6Pz888su93ynP3l2j9tw0kpYN9w9Qg+NlTZANJD8L3u3zZEEk37Ful4SWHbu0jtYbTnjkUiz52qki12B0/mGc9J/CKVHaks/wkHm0+d1EuPrJLH4+n23xHueACpKdzEpM2nToZtcyJNZhyJ//En605E1b7Feu5YJPLcqSoZY3d7uoOSQot27avXsk1OLfhelkaX5HdYttqcWv1q1z6fRSo7Uln+aR1ONkrLNnWe0qFrf0f3UkIASF7+7URwuxJJcLsRTfsWfLykgGMjlR3ruWORyHO3S/lO9M8//1wej0fnnntuwPpzzz1X+/fvD3mMYRgy/FIQnD59WpLikl+ooaFBrR6P9jc0qMHt1nGnU82Gof/+979qaGiQ1WpVi2GoKStLDW63mtzugO3+Iu0bvL3Z45HH61WzxxOw/L+mJnlycnSoqcm3vVkK2Lezstv/Dv9jw5Udavnk2XN1Zd9YlzkX5+Jc8Sk7VNsgKaBdiKV9C8X/eElRlR3ruWMR6tytHo8aGhpijivtx3u93nhUNWkkY+x2u1tlNDfL2dQoV4tTbW0eGc7Qy0Zzs5zNzV16f1mtVhktLZ2WHVxW+/41h/4nZ1OjPjt2xLd/+7E1Rw7K6/GovrYm5LGR/o7249vLDrXsPF3f5X1jXeZcnItzxafsUG1WV9uc9nYjmvYtuI2Ltq2M9dyxCHVut7uV2B1GMsbuVrdHTS1uNTS71Wx45GnzqrnFE3K5qcWtZmfXPhv6Ptu1ZHWpLN93Z2uDGprdOnSiybd/syF52rz6n7VJnrYcHbc7Qx7b2bnal9uPby871PLJJnV531iXORfn4lzxKTtUuyIpoE2J1G5E074Ft3GSoio71nPHItS5W929/L3bm+KOHz/uleR9//33A9b/4he/8E6YMCHkMUuXLvVK4sWLFy9evFLiZbVaeyOk9hpiNy9evHjxSvcXsZvYzYsXL168UusVKXan/JPogwcPVlZWlurq6gLW19XVqaioKOQxixcv1qJFi3zLbW1tOnnypAoKCpSRkdGj9Q3mcDhUUlIiq9WqQYMG9eq50wXXMHZcw9hxDWPHNezI6/WqoaFBw4YNS3RV4irVY7fE+zUeuIax4xrGhusXO65hR8TuLyRL7OZ9GjuuYey4hrHjGsaG69e5rsbulO9EN5lMGjdunN566y1NmzZN0png/NZbb2n+/PkhjzGbzb7E/e3y8/N7uKbhDRo0iDdxjLiGseMaxo5rGDuuYaC8NJzAOV1it8T7NR64hrHjGsaG6xc7rmEgYvcZyRa7eZ/GjmsYO65h7LiGseH6hdaV2J3yneiStGjRIs2aNUvjx4/XhAkTtHbtWjU1NflmDQcAAMmF2A0AQGohdgMA+rK06ES/8cYbZbPZtGTJEtXW1uriiy/Wm2++2WHSEwAAkByI3QAApBZiNwCgL0uLTnRJmj9/fqfDyJKZ2WzW0qVLOwxzQ9dxDWPHNYwd1zB2XMO+J1Vjt8T7NR64hrHjGsaG6xc7rmHfk4qxm/dp7LiGseMaxo5rGBuuX+wyvF6vN9GVAAAAAAAAAAAgGWUmugIAAAAAAAAAACQrOtEBAAAAAAAAAOgEnegAAAAAAAAAAHSCTvQkZBiGLr74YmVkZGjv3r2Jrk7KOHr0qCoqKlRaWiqLxaKysjItXbpULpcr0VVLauvWrdPIkSOVm5uriRMn6oMPPkh0lVLKihUr9I1vfEMDBw7UkCFDNG3aNH3yySeJrlbKWrlypTIyMnT77bcnuipAtxDDo0f87h7id/cRu+OL2I1URcyOHjG7e4jZ3UfMjj/idvfRiZ6E7rrrLg0bNizR1Ug5+/fvV1tbmx599FF9/PHHWrNmjdavX6977rkn0VVLWlu2bNGiRYu0dOlS7dmzR2PHjtXkyZP12WefJbpqKWPnzp2aN2+edu3ape3bt6u1tVVXX321mpqaEl21lLN79249+uijuuiiixJdFaDbiOHRI35Hj/gdG2J3/BC7kcqI2dEjZkePmB0bYnZ8Ebdj5EVSef31170XXnih9+OPP/ZK8v7rX/9KdJVS2gMPPOAtLS1NdDWS1oQJE7zz5s3zLXs8Hu+wYcO8K1asSGCtUttnn33mleTduXNnoquSUhoaGryjRo3ybt++3Ttp0iTvz3/+80RXCYgaMTx+iN/hEb/ji9jdPcRupDJidvwQs8MjZscXMbv7iNux40n0JFJXV6dbb71VTz/9tPr165fo6qSF06dP65xzzkl0NZKSy+XSP//5T1111VW+dZmZmbrqqqv0t7/9LYE1S22nT5+WJN53UZo3b56+//3vB7wfgVRCDI8v4nfniN/xR+zuHmI3UhUxO76I2Z0jZscfMbv7iNuxy050BXCG1+vV7NmzNWfOHI0fP15Hjx5NdJVS3sGDB/XQQw9p1apVia5KUvr888/l8Xh07rnnBqw/99xztX///gTVKrW1tbXp9ttv17e+9S199atfTXR1UsZzzz2nPXv2aPfu3YmuCtAtxPD4In6HR/yOL2J39xC7kaqI2fFFzA6PmB1fxOzuI27HB0+i97C7775bGRkZYV/79+/XQw89pIaGBi1evDjRVU46Xb2G/o4fP64pU6bohz/8oW699dYE1Rx9zbx58/TRRx/pueeeS3RVUobVatXPf/5zPfvss8rNzU10dYAAxPDYEL+RCojd0SN2IxkRs2NDzEYqIGZ3D3E7fjK8Xq830ZVIZzabTXa7Pew+559/vm644Qa9+uqrysjI8K33eDzKysrSTTfdpKeeeqqnq5q0unoNTSaTJKmmpkbl5eX65je/qSeffFKZmfxWFIrL5VK/fv304osvatq0ab71s2bN0qlTp7R169bEVS4FzZ8/X1u3btXbb7+t0tLSRFcnZbzyyiv6wQ9+oKysLN86j8ejjIwMZWZmyjCMgG1AbyKGx4b43TOI3/FD7O4eYjeSETE7NsTsnkHMjh9idvcRt+OHTvQkcezYMTkcDt9yTU2NJk+erBdffFETJ05UcXFxAmuXOo4fP64rrrhC48aN0zPPPENDEMHEiRM1YcIEPfTQQ5LODI8677zzNH/+fN19990Jrl1q8Hq9qqys1Msvv6wdO3Zo1KhRia5SSmloaFB1dXXAuptvvlkXXnihfvnLXzJMDymBGB474nd0iN+xIXbHhtiNVEbMjh0xOzrE7NgQs2NH3I4fcqInifPOOy9gecCAAZKksrIyAnkXHT9+XOXl5RoxYoRWrVolm83m21ZUVJTAmiWvRYsWadasWRo/frwmTJigtWvXqqmpSTfffHOiq5Yy5s2bp82bN2vr1q0aOHCgamtrJUl5eXmyWCwJrl3yGzhwYIeg3b9/fxUUFBDMkTKI4bEhfkeP+B0bYndsiN1IZcTs2BCzo0fMjg0xO3bE7fihEx1pY/v27Tp48KAOHjzY4QMQAy5Cu/HGG2Wz2bRkyRLV1tbq4osv1ptvvtlh4hN0rqqqSpJUXl4esH7jxo2aPXt271cIAFIM8Tt6xO/YELsBoHuI2dEjZseGmI1kQjoXAAAAAAAAAAA6wewPAAAAAAAAAAB0gk50AAAAAAAAAAA6QSc6AAAAAAAAAACdoBMdAAAAAAAAAIBO0IkOAAAAAAAAAEAn6EQHAAAAAAAAAKATdKIDAAAAAAAAANAJOtEBAAAAAAAAAOgEnehAH3L06FFlZGRo7969ne6zY8cOZWRk6NSpU3E9d0ZGhl555ZW4lhmsvLxct99+e4+eAwCA3kTsBgAgtRC7gfREJzqQRGbPnq2MjAxlZGQoJydHpaWluuuuu9TS0hKX8ktKSnTixAl99atfjUt58XLttddqypQpIbe98847ysjI0H/+859erhUAAJERuzsidgMAkhmxuyNiNxAZnehAkpkyZYpOnDihw4cPa82aNXr00Ue1dOnSuJSdlZWloqIiZWdnx6W8eKmoqND27dv16aefdti2ceNGjR8/XhdddFECagYAQGTE7kDEbgBAsiN2ByJ2A5HRiQ4kGbPZrKKiIpWUlGjatGm66qqrtH37dt/2trY2rVixQqWlpbJYLBo7dqxefPFF3/b6+nrddNNNKiwslMVi0ahRo7Rx40ZJoYeVvf766xo9erQsFouuuOIKHT16NKA+v/71r3XxxRcHrFu7dq1GjhzpW969e7e++93vavDgwcrLy9OkSZO0Z8+eLv/NU6dOVWFhoZ588smA9Y2NjXrhhRdUUVEhu92uH/3oRxo+fLj69eunr33ta/rjH/8YttxQQ9ny8/MDzmO1WnXDDTcoPz9f55xzjq677roO1wAAgHCI3V8gdgMAUgGx+wvEbqBr6EQHkthHH32k999/XyaTybduxYoV2rRpk9avX6+PP/5YCxcu1I9//GPt3LlTknTffffpv//9r9544w3t27dPVVVVGjx4cMjyrVarrr/+el177bXau3evfvrTn+ruu++Oup4NDQ2aNWuW3n33Xe3atUujRo3SNddco4aGhi4dn52drZ/85Cd68skn5fV6fetfeOEFeTwe/ehHP1JLS4vGjRunbdu26aOPPtJtt92mmTNn6oMPPoi6vu1aW1s1efJkDRw4UO+8847ee+89DRgwQFOmTJHL5ep2uQCAvovYTewGAKQWYjexG+iK5BpbAkCvvfaaBgwYILfbLcMwlJmZqYcffliSZBiGli9frr/85S+69NJLJUnnn3++3n33XT366KOaNGmSjh07pq9//esaP368JAX8ch2sqqpKZWVlWr16tSTpS1/6kj788EP97ne/i6rOV155ZcDyY489pvz8fO3cuVNTp07tUhm33HKLfv/732vnzp0qLy+XdGZI2fTp05WXl6e8vDzdeeedvv0rKyv15z//Wc8//7wmTJgQVX3bbdmyRW1tbXr88ceVkZHhO2d+fr527Nihq6++ulvlAgD6FmI3sRsAkFqI3cRuIFp0ogNJ5oorrlBVVZWampq0Zs0aZWdna/r06ZKkgwcPqrm5Wd/97ncDjnG5XPr6178uSZo7d66mT5+uPXv26Oqrr9a0adN02WWXhTzXvn37NHHixIB17R8SolFXV6d7771XO3bs0GeffSaPx6Pm5mYdO3asy2VceOGFuuyyy7RhwwaVl5fr4MGDeuedd/Tb3/5WkuTxeLR8+XI9//zzOn78uFwulwzDUL9+/aKub7t///vfOnjwoAYOHBiwvqWlRYcOHep2uQCAvoXYTewGAKQWYjexG4gWnehAkunfv78uuOACSdKGDRs0duxYPfHEE6qoqFBjY6Mkadu2bRo+fHjAcWazWZL0ve99T9XV1Xr99de1fft2fec739G8efO0atWqbtUnMzMzYKiXdGY4lr9Zs2bJbrfrwQcf1IgRI2Q2m3XppZdGPTSroqJClZWVWrdunTZu3KiysjJNmjRJkvT73/9eDz74oNauXauvfe1r6t+/v26//faw58jIyAhb98bGRo0bN07PPvtsh2MLCwujqjsAoO8idhO7AQCphdhN7AaiRU50IIllZmbqnnvu0b333iun06kvf/nLMpvNOnbsmC644IKAV0lJie+4wsJCzZo1S88884zWrl2rxx57LGT5Y8aM6ZDbbNeuXQHLhYWFqq2tDQiK/hOkSNJ7772nBQsW6JprrtFXvvIVmc1mff7551H/vTfccIMyMzO1efNmbdq0SbfccotvuNd7772n6667Tj/+8Y81duxYnX/++frf//4XtrzCwkKdOHHCt3zgwAE1Nzf7li+55BIdOHBAQ4YM6XA98/Lyoq4/AADEbmI3ACC1ELuJ3UBX0IkOJLkf/vCHysrK0rp16zRw4EDdeeedWrhwoZ566ikdOnRIe/bs0UMPPaSnnnpKkrRkyRJt3bpVBw8e1Mcff6zXXntNY8aMCVn2nDlzdODAAf3iF7/QJ598os2bN3eYqbu8vFw2m00PPPCADh06pHXr1umNN94I2GfUqFF6+umntW/fPv3973/XTTfdJIvFEvXfOmDAAN14441avHixTpw4odmzZwecY/v27Xr//fe1b98+/exnP1NdXV3Y8q688ko9/PDD+te//qV//OMfmjNnjnJycnzbb7rpJg0ePFjXXXed3nnnHR05ckQ7duzQggUL9Omnn0ZdfwAAJGK3/zmI3QCAVEDs/uIcxG4gNDrRgSSXnZ2t+fPn64EHHlBTU5Puv/9+3XfffVqxYoXGjBmjKVOmaNu2bSotLZUkmUwmLV68WBdddJEuv/xyZWVl6bnnngtZ9nnnnaeXXnpJr7zyisaOHav169dr+fLlAfuMGTNGjzzyiNatW6exY8fqgw8+CJhoRJKeeOIJ1dfX65JLLtHMmTO1YMECDRkypFt/b0VFherr6zV58mQNGzbMt/7ee+/VJZdcosmTJ6u8vFxFRUWaNm1a2LJWr16tkpISffvb39aMGTN05513BuRy69evn95++22dd955uv766zVmzBhVVFSopaVFgwYN6lb9AQAgdp9B7AYApApi9xnEbqBzGd7gxEUAAAAAAAAAAEAST6IDAAAAAAAAANApOtEBAAAAAAAAAOgEnegAAAAAAAAAAHSCTnQAAAAAAAAAADpBJzoAAAAAAAAAAJ2gEx0AAAAAAAAAgE7QiQ4AAAAAAAAAQCfoRAcAAAAAAAAAoBN0ogMAAAAAAAAA0Ak60QEAAAAAAAAA6ASd6AAAAAAAAAAAdIJOdAAAAAAAAAAAOvH/rEklmCK3TugAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "## plot residual results\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "res_true = y - X.dot(beta_true)\n", + "res_ols = y - ols.predict(X)\n", + "res_RR = y - np.mean(y) - X.dot(RankReg.coef_)\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Create a figure with three subplots\n", + "fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5))\n", + "\n", + "# Histogram for true residuals\n", + "ax1.hist(res_true, bins=100, alpha=0.7, color='red', edgecolor='black')\n", + "ax1.set_title('True Residuals')\n", + "ax1.set_xlabel('Residual Value')\n", + "ax1.set_ylabel('Frequency')\n", + "\n", + "# Histogram for OLS residuals\n", + "ax2.hist(res_ols, bins=100, alpha=0.7, color='skyblue', edgecolor='black')\n", + "ax2.set_title('OLS Residuals')\n", + "ax2.set_xlabel('Residual Value')\n", + "ax2.set_ylabel('Frequency')\n", + "\n", + "# Histogram for RR residuals\n", + "ax3.hist(res_RR, bins=100, alpha=0.7, color='orange', edgecolor='black')\n", + "ax3.set_title('Rank Regression Residuals')\n", + "ax3.set_xlabel('Residual Value')\n", + "ax3.set_ylabel('Frequency')\n", + "\n", + "# Set layout and show plot\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, { "cell_type": "markdown", "metadata": { @@ -308,22 +364,13 @@ "provenance": [] }, "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", + "display_name": "Python 3", "name": "python3" }, "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } + "name": "python" + }, + "nbformat_minor": 0 }, "nbformat": 4, "nbformat_minor": 4 diff --git a/doc/source/examples/RankRegression.ipynb b/doc/source/examples/RankRegression.ipynb index 781baa2..eb93e0c 100644 --- a/doc/source/examples/RankRegression.ipynb +++ b/doc/source/examples/RankRegression.ipynb @@ -69,7 +69,7 @@ }, { "cell_type": "code", - "execution_count": 200, + "execution_count": 1, "metadata": { "id": "r3VoUcR4FceK" }, @@ -100,7 +100,7 @@ }, { "cell_type": "code", - "execution_count": 201, + "execution_count": 2, "metadata": { "id": "OcdNUtvrn_Hy" }, @@ -127,7 +127,7 @@ }, { "cell_type": "code", - "execution_count": 202, + "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -144,15 +144,15 @@ }, { "cell_type": "code", - "execution_count": 203, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 811 ms, sys: 105 ms, total: 916 ms\n", - "Wall time: 915 ms\n" + "CPU times: user 793 ms, sys: 132 ms, total: 925 ms\n", + "Wall time: 925 ms\n" ] } ], @@ -175,7 +175,7 @@ }, { "cell_type": "code", - "execution_count": 204, + "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -197,15 +197,15 @@ }, { "cell_type": "code", - "execution_count": 205, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 744 ms, sys: 77.2 ms, total: 821 ms\n", - "Wall time: 819 ms\n" + "CPU times: user 737 ms, sys: 95 ms, total: 832 ms\n", + "Wall time: 830 ms\n" ] } ], @@ -227,7 +227,7 @@ }, { "cell_type": "code", - "execution_count": 206, + "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -239,13 +239,13 @@ { "data": { "text/html": [ - "
LinearRegression(fit_intercept=False)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + "
LinearRegression(fit_intercept=False)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "LinearRegression(fit_intercept=False)" ] }, - "execution_count": 206, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -257,8 +257,10 @@ }, { "cell_type": "code", - "execution_count": 207, - "metadata": {}, + "execution_count": 8, + "metadata": { + "scrolled": true + }, "outputs": [ { "name": "stdout", @@ -291,6 +293,60 @@ " print(f\"{str(key).ljust(20)} {str(value).ljust(20)}\")" ] }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAHqCAYAAADrpwd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfCElEQVR4nOzde1xUdf7H8TeIDBMKBCEXQSXSLDMzLbe01GTzkqZltaaZtzIpLS9ZuaWVaWZpuVpidtFsdft1Mdfa1TK1tVo1L1mtuaWII6ngBOLIbWCG8/vDmHWEUURgBng9H495PDzfc+bM54zWZ+Yz3/P5+hmGYQgAAAAAAAAAAJTh7+0AAAAAAAAAAADwVRTRAQAAAAAAAADwgCI6AAAAAAAAAAAeUEQHAAAAAAAAAMADiugAAAAAAAAAAHhAER0AAAAAAAAAAA8oogMAAAAAAAAA4AFFdAAAAAAAAAAAPKCIDgAAAAAAAACABxTRAXhdixYtNHz48LMet3TpUvn5+enAgQPVFsuBAwfk5+enpUuXVttrAABQWz3zzDPy8/Or0LF+fn565plnqjWebt26qVu3btX6GgCA6jV8+HA1atTI22HUasOHD1eLFi28HUaN+fLLL+Xn56cvv/zyrMfWxGeFc/l8hNqLIjpQA/z8/Cr0qEgCqE7dunVzi8dsNuvKK6/UvHnzVFJS4tXYAADwpt27d+uee+5R06ZNZTKZFBsbqyFDhmj37t1lji390Xf79u1nPKfVatUjjzyi1q1by2w2q0mTJrr22mv1+OOPKzc394zPLX2N0kdAQICaNm2q4cOH69ChQ+d1rQCA+qU255TS4mXpo2HDhmrRooUefvhh5eTkeDu8Oq90Elrpw9/fX+Hh4erdu7c2b97s7fCAKhXg7QCA+uDdd9912162bJnWrVtXZvyyyy6rybDKFRcXp1mzZkmSfvvtN61YsUITJkyQ1WrVzJkzq+U1f/75Z/n785seAMA3rVy5UnfffbfCw8M1atQoJSQk6MCBA3rrrbf04Ycf6r333tNtt912TufMzs5Wx44dZbPZNHLkSLVu3VpZWVn64YcflJKSouTk5ArNyps+fboSEhJUWFioLVu2aOnSpfr666/1n//8R0FBQZW9ZI+eeuopPfHEE1V+XgCA99V0TqlKKSkpatSokfLy8rR+/XotWLBAO3fu1Ndff+3t0GrEG2+84dWJb3fffbf69Okjp9OpX375RQsXLlT37t21bds2tW3btspf78Ybb1RBQYECAwOr/NyAJxTRgRpwzz33uG1v2bJF69atKzN+uvz8fF1wwQXVGVoZoaGhbnGNGTNGrVu31oIFCzR9+nQ1aNCgyl/TZDJV+TkBAKgKqampGjp0qC6++GJt2rRJkZGRrn2PPPKIbrjhBg0dOlQ//PCDLr744gqf96233tLBgwf1zTff6Prrr3fbZ7PZKvylsHfv3urYsaMk6b777tNFF12k2bNna/Xq1brrrrsqHE9FBQQEKCCArxAAUBfVdE6pSnfccYcuuugiSdIDDzygQYMG6f/+7//07bff6tprr62xOEpKSlRUVFTjPzo0bNiwRl/vdFdffbVbHeGGG25Q7969lZKSooULF1b56/n7+/v8Dzuoe5j6CfiIbt266YorrtCOHTt044036oILLtCf//xnSZ57ipbXSzwnJ0fjx49XfHy8TCaTLrnkEs2ePbvSv0oHBQXpmmuu0YkTJ3T06FG3fX/961/VoUMHmc1mhYeHa9CgQUpPT3c7Zu/evRo4cKCio6MVFBSkuLg4DRo0SMePHz/jdezevVs33XSTzGaz4uLiNGPGjHKvoaLvTXZ2th599FG1bdtWjRo1UkhIiHr37q3vv//+rO9BRkaGRowYobi4OJlMJsXExKh///7V2psdAOAbXnrpJeXn52vx4sVuBXRJuuiii/T6668rLy9PL7744jmdNzU1VQ0aNNAf/vCHMvtCQkIq/cXwhhtucJ3/VP/97391xx13KDw8XEFBQerYsaNWr17tdkxxcbGeffZZtWzZUkFBQYqIiFCXLl20bt061zHl9fy02+2aMGGCIiMj1bhxY91666369ddfy8TmqV9reedcsmSJbrrpJjVp0kQmk0mXX365UlJSKvQeLFiwQG3atNEFF1ygCy+8UB07dtSKFSsq9FwAwP+Ul1OKioo0bdo0dejQQaGhoQoODtYNN9ygjRs3uj23tM3HnDlztHjxYiUmJspkMumaa67Rtm3bzvrau3btUmRkpLp163bWFmcVjV2Stm7dql69eik0NFQXXHCBunbtqm+++abM87/88kt17NhRQUFBSkxM1Ouvv15uvvLz89PYsWO1fPlytWnTRiaTSWvXrpUkHTp0SCNHjlRUVJRMJpPatGmjt99+u8xrnS1vnThxQuPHj1eLFi1kMpnUpEkT/fGPf9TOnTtdx5SXY/Py8jRp0iRXbeDSSy/VnDlzZBhGudewatUqXXHFFa5YS6+jMjy9/xWtV7z33nvq0KGDGjdurJCQELVt21Z/+ctfXPs99UQv/bdmNpt17bXX6quvvioTm6e11so751dffaU777xTzZo1k8lkUnx8vCZMmKCCgoKzvgfr1q1Tly5dFBYWpkaNGunSSy911XhQOzGNBPAhWVlZ6t27twYNGqR77rlHUVFR5/T8/Px8de3aVYcOHdIDDzygZs2a6d///remTJmiI0eOaN68eZWKq/QDUFhYmGts5syZmjp1qu666y7dd999slqtWrBggW688UZ99913CgsLU1FRkXr27Cm73a5x48YpOjpahw4d0qeffqqcnByFhoaW+3oZGRnq3r27HA6HnnjiCQUHB2vx4sUym82Vil+S9u/fr1WrVunOO+9UQkKCMjMz9frrr6tr16766aefFBsb6/G5AwcO1O7duzVu3Di1aNFCR48e1bp163Tw4MF6tXgLANRHn3zyiVq0aOH6Mni6G2+8US1atNA//vGPczpv8+bN5XQ69e6772rYsGFVEaokub4QXnjhha6x3bt3q3PnzmratKkrr77//vsaMGCAPvroI1crmmeeeUazZs3Sfffdp2uvvVY2m03bt2/Xzp079cc//tHja953333661//qsGDB+v666/Xhg0bdMstt5zXdaSkpKhNmza69dZbFRAQoE8++UQPPvigSkpK9NBDD3l83htvvKGHH35Yd9xxhx555BEVFhbqhx9+0NatWzV48ODzigkA6pvycorNZtObb76pu+++W/fff79OnDiht956Sz179tS3336rq666yu0cK1as0IkTJ/TAAw/Iz89PL774om6//Xbt37/f4+zpbdu2qWfPnurYsaP+/ve/V+p7YHmxb9iwQb1791aHDh309NNPy9/f3/Wj7VdffeWasf7dd9+pV69eiomJ0bPPPiun06np06eX+TH91PO+//77Gjt2rC666CK1aNFCmZmZ+sMf/uAqUEdGRmrNmjUaNWqUbDabxo8fL6lieWvMmDH68MMPNXbsWF1++eXKysrS119/rT179ujqq68uNybDMHTrrbdq48aNGjVqlK666ip99tlnmjx5sg4dOqRXXnnF7fivv/5aK1eu1IMPPqjGjRtr/vz5GjhwoA4ePKiIiIgqef8rWq9Yt26d7r77bvXo0UOzZ8+WJO3Zs0fffPONHnnkEY+v+dZbb+mBBx7Q9ddfr/Hjx2v//v269dZbFR4ervj4+HO+Bkn64IMPlJ+fr+TkZEVEROjbb7/VggUL9Ouvv+qDDz7w+Lzdu3erb9++uvLKKzV9+nSZTCbt27ev3B9sUIsYAGrcQw89ZJz+n1/Xrl0NScaiRYvKHC/JePrpp8uMN2/e3Bg2bJhr+7nnnjOCg4ONX375xe24J554wmjQoIFx8ODBM8bVtWtXo3Xr1obVajWsVqvx3//+15g8ebIhybjllltcxx04cMBo0KCBMXPmTLfn//jjj0ZAQIBr/LvvvjMkGR988MEZX/f06xg/frwhydi6datr7OjRo0ZoaKghyUhLS3ONV/S9KSwsNJxOp9sxaWlphslkMqZPn+42JslYsmSJYRiGcezYMUOS8dJLL53xGgAAdU9OTo4hyejfv/8Zj7v11lsNSYbNZjMMwzCWLFliSDK2bdvm8TkZGRlGZGSkIclo3bq1MWbMGGPFihVGTk5OhWIrfY0vvvjCsFqtRnp6uvHhhx8akZGRhslkMtLT013H9ujRw2jbtq1RWFjoGispKTGuv/56o2XLlq6xdu3aueX78jz99NNun2F27dplSDIefPBBt+MGDx5cJkcPGzbMaN68+VnPaRiGkZ+fX+a4nj17GhdffLHbWNeuXY2uXbu6tvv372+0adPmjNcAAHB3LjnF4XAYdrvd7fnHjh0zoqKijJEjR7rGSr9XRUREGNnZ2a7xv//974Yk45NPPnGNDRs2zAgODjYMwzC+/vprIyQkxLjlllvc8pYnpTnk559/NqxWq3HgwAHj7bffNsxmsxEZGWnk5eUZhnEy77Vs2dLo2bOnUVJS4np+fn6+kZCQYPzxj390jfXr18+44IILjEOHDrnG9u7dawQEBJTJV5IMf39/Y/fu3W7jo0aNMmJiYozffvvNbXzQoEFGaGioK89VJG+FhoYaDz300BmPOT3Hrlq1ypBkzJgxw+24O+64w/Dz8zP27dvndg2BgYFuY99//70hyViwYMEZX7f07/nZZ581rFarkZGRYXz11VfGNddcU6YWUNF6xSOPPGKEhIQYDofD4+tu3LjRkGRs3LjRMAzDKCoqMpo0aWJcddVVbv8+Fy9ebEhy+6xQ+u/91LpCeec0jPI/j8yaNcvw8/MzLBaLa+z0zzKvvPKKIcmwWq0erwG1D+1cAB9iMpk0YsSISj//gw8+0A033KALL7xQv/32m+uRlJQkp9OpTZs2nfUc//3vfxUZGanIyEi1bt1aL730km699VYtXbrUdczKlStVUlKiu+66y+11oqOj1bJlS9etfKUzzT/77DPl5+dX+Dr++c9/6g9/+INb77rIyEgNGTKkwuc4nclkci1e6nQ6lZWV5bql6tTb4E5nNpsVGBioL7/8UseOHav06wMAap8TJ05Ikho3bnzG40r322y2Cp87KipK33//vcaMGaNjx45p0aJFGjx4sJo0aaLnnnuuzK3WniQlJSkyMlLx8fG64447FBwcrNWrVysuLk7SyXZmGzZs0F133aUTJ064cnZWVpZ69uypvXv36tChQ5KksLAw7d69W3v37q3wdfzzn/+UJD388MNu46Uz7Crr1FmHx48f12+//aauXbtq//79bi3hThcWFqZff/21Qq0CAADuzpZTJKlBgwaudTtKSkqUnZ0th8Ohjh07lvu96k9/+pPbbOTSO7v2799f5tiNGzeqZ8+e6tGjh1auXHlOa2ddeumlioyMVIsWLTRy5EhdcsklWrNmjWuNsV27dmnv3r0aPHiwsrKyXPkwLy9PPXr00KZNm1RSUiKn06kvvvhCAwYMcLtb+ZJLLlHv3r3Lfe2uXbvq8ssvd20bhqGPPvpI/fr1k2EYbt+Ze/bsqePHj7veq4rkrbCwMG3dulWHDx+u8Pvxz3/+Uw0aNCiTnydNmiTDMLRmzRq38aSkJCUmJrq2r7zySoWEhJT791Sep59+WpGRkYqOjtYNN9ygPXv2aO7cubrjjjtcx1S0XhEWFqa8vDy3dnJns337dh09elRjxoxxW1dm+PDhHu+Ar4hTP4/k5eXpt99+0/XXXy/DMPTdd995fF7pXfx///vfvbrgK6oWRXTAhzRt2vS8Vpfeu3ev1q5d6yqClz6SkpIkqUxP8/K0aNFC69at02effaaFCxeqadOmslqtbr1Z9+7dK8Mw1LJlyzKvtWfPHtfrJCQkaOLEiXrzzTd10UUXqWfPnnrttdfO+OVXkiwWi1q2bFlm/NJLLz2Xt8NNSUmJXnnlFbVs2VImk0kXXXSRIiMj9cMPP5wxHpPJpNmzZ2vNmjWKiorSjTfeqBdffFEZGRmVjgUAUDuUFsdLi+meVLTYfrqYmBilpKToyJEj+vnnnzV//nxFRkZq2rRpeuuttyp0jtdee03r1q3Thx9+qD59+ui3335zKzrs27dPhmFo6tSpZXL2008/Lel/nw+mT5+unJwctWrVSm3bttXkyZP1ww8/nPH1LRaL/P393b54S+eXsyXpm2++UVJSkoKDgxUWFqbIyEhXH9Ez5e3HH39cjRo10rXXXquWLVvqoYce4tZpAKigs+WUUu+8846uvPJK1/oZkZGR+sc//lHu/5+bNWvmtl1aUD99glJhYaFuueUWtW/fXu+///45fy/+6KOPtG7dOq1YsUJ/+MMfdPToUbcCaOkPxMOGDSuTD998803Z7XYdP35cR48eVUFBgS655JIyr1HemHTye++prFarcnJyXOupnPoonTRXmnsrkrdefPFF/ec//1F8fLyuvfZaPfPMM2ctblssFsXGxpb5bHLZZZe59p/q9L8n6eTfVUUnko0ePVrr1q3TJ5984uoZ7nQ63Y6paL3iwQcfVKtWrdS7d2/FxcVp5MiRZ+3PXno9p9cRGjZseE4Lv5/u4MGDGj58uMLDw9WoUSNFRkaqa9euks78eeRPf/qTOnfurPvuu09RUVEaNGiQ3n//fQrqtRw90QEfcq693k5PSiUlJfrjH/+oxx57rNzjW7VqddZzBgcHu5KYJHXu3FlXX321/vznP2v+/Pmu1/Hz89OaNWvUoEGDMudo1KiR689z587V8OHD9fe//12ff/65Hn74Yc2aNUtbtmxxm9FQ1U5/b55//nlNnTpVI0eO1HPPPafw8HD5+/tr/PjxZ01k48ePV79+/bRq1Sp99tlnmjp1qmbNmqUNGzaoffv21XYNAADvCg0NVUxMzFkLyT/88IOaNm2qkJCQSr2On5+fWrVqpVatWumWW25Ry5YttXz5ct13331nfe61116rjh07SpIGDBigLl26aPDgwfr555/VqFEjV4579NFH1bNnz3LPUVoUuPHGG5WamurK2W+++aZeeeUVLVq0qEKxVOQ6y3N6zk5NTVWPHj3UunVrvfzyy4qPj1dgYKD++c9/6pVXXjlj3r7sssv0888/69NPP9XatWv10UcfaeHChZo2bZqeffbZ874GAKjLzpZTJOmvf/2rhg8frgEDBmjy5Mlq0qSJGjRooFmzZpVZRFJSud8XJZW548pkMqlPnz76+9//rrVr16pv377nFPuNN96oiy66SJLUr18/tW3bVkOGDNGOHTvk7+/vyh0vvfRSmb7tpRo1aqTCwsJzel2p7Pf40te65557PK57cuWVV0qqWN666667dMMNN+jjjz/W559/rpdeekmzZ8/WypUrPc6OP1cV/XvypGXLlq46Qt++fdWgQQM98cQT6t69u+vfVEXrFU2aNNGuXbv02Wefac2aNVqzZo2WLFmie++9V++88865XloZFf084nQ69cc//lHZ2dl6/PHH1bp1awUHB+vQoUMaPnz4GT+PmM1mbdq0SRs3btQ//vEPrV27Vv/3f/+nm266SZ9//rnH9xu+jSI6UAtceOGFysnJcRsrKirSkSNH3MYSExOVm5vrVgQ/X1deeaXuuecevf7663r00UfVrFkzJSYmyjAMJSQkVKgw37ZtW7Vt21ZPPfWU/v3vf6tz585atGiRZsyYUe7xzZs3L/dW8p9//rnMWEXfmw8//FDdu3cvM7MvJyfH9WHrTBITEzVp0iRNmjRJe/fu1VVXXaW5c+fqr3/961mfCwCovfr27as33nhDX3/9tbp06VJm/1dffaUDBw7ogQceqJLXu/jii3XhhReWyWMVUVrE6N69u1599VU98cQTrtlXDRs2rNDng/DwcI0YMUIjRoxQbm6ubrzxRj3zzDMei+jNmzdXSUmJUlNT3WafVzRnS2Vnw33yySey2+1avXq128y40nZxZxMcHKw//elP+tOf/qSioiLdfvvtmjlzpqZMmeJ2Zx0AwLPycop08nvVxRdfrJUrV7oVI0vvbqosPz8/LV++XP3799edd96pNWvWqFu3bpU6V6NGjfT0009rxIgRev/99zVo0CDXHVMhISFnzIdNmjRRUFCQ9u3bV2ZfeWPliYyMVOPGjeV0OiuUeyuSt2JiYvTggw/qwQcf1NGjR3X11Vdr5syZHovozZs31xdffKETJ064zUb/73//69pfnZ588km98cYbeuqpp1yzyM+lXhEYGKh+/fqpX79+Kikp0YMPPqjXX39dU6dOLfeOgNLr2bt3r2666SbXeHFxsdLS0tSuXTvXWOndEKd/Jjn988iPP/6oX375Re+8847uvfde13hF28z4+/urR48e6tGjh15++WU9//zzevLJJ7Vx48Yqrdmg5tDOBagFEhMTy/QzX7x4cZlfSu+66y5t3rxZn332WZlz5OTkyOFwVOr1H3vsMRUXF+vll1+WJN1+++1q0KCBnn322TK/TBuGoaysLEkne8Oe/ppt27aVv7+/7Ha7x9fr06ePtmzZom+//dY1ZrVatXz58jLHVvS9adCgQZlYP/jgA1cfWE/y8/PLzEZITExU48aNz3gNAIC6YfLkyTKbzXrggQdc+a1Udna2xowZowsuuECTJ08+p/Nu3bpVeXl5Zca//fZbZWVlVbodSrdu3XTttddq3rx5KiwsVJMmTdStWze9/vrr5RbmrVar68+nX1+jRo10ySWXnDHflX55L71brdS8efPKHJuYmKjjx4+7zew/cuSIPv74Y7fjSmdnnZq3jx8/riVLlniMw9M1BAYG6vLLL5dhGCouLj7r8wEA/3N6TpHK/3/01q1btXnz5vN+vcDAQK1cuVLXXHON+vXr5/Z98FwNGTJEcXFxmj17tiSpQ4cOSkxM1Jw5c5Sbm1vm+NJ82KBBAyUlJWnVqlVuPcj37dtXpo+4Jw0aNNDAgQP10Ucf6T//+Y/H15LOnrecTmeZtiFNmjRRbGzsWb9TO51Ovfrqq27jr7zyivz8/KpsBrsnYWFheuCBB/TZZ59p165dkiperzj9PfH393fN3Pd0zR07dlRkZKQWLVqkoqIi1/jSpUvLFMtLf1A5tY7gdDq1ePFit+PK+7duGIb+8pe/eLzuUtnZ2WXGSu+AoI5QezETHagF7rvvPo0ZM0YDBw7UH//4R33//ff67LPPysygnjx5slavXq2+fftq+PDh6tChg/Ly8vTjjz/qww8/1IEDByo06/p0l19+ufr06aM333xTU6dOVWJiombMmKEpU6bowIEDGjBggBo3bqy0tDR9/PHHGj16tB599FFt2LBBY8eO1Z133qlWrVrJ4XDo3XffdX2o8OSxxx7Tu+++q169eumRRx5RcHCwFi9erObNm5e5pb6i703fvn01ffp0jRgxQtdff71+/PFHLV++/Kz90X755Rf16NFDd911ly6//HIFBATo448/VmZmpgYNGnTO7yUAoHZp2bKl3nnnHQ0ZMkRt27bVqFGjlJCQoAMHDuitt97Sb7/9pr/97W9leoJL0ttvv11uD89HHnlE7777rpYvX67bbrtNHTp0UGBgoPbs2aO3335bQUFBrv7flTF58mTdeeedWrp0qcaMGaPXXntNXbp0Udu2bXX//ffr4osvVmZmpjZv3qxff/1V33//vaST+b5bt27q0KGDwsPDtX37dn344YcaO3asx9e66qqrdPfdd2vhwoU6fvy4rr/+eq1fv77c2XqDBg3S448/rttuu00PP/yw8vPzlZKSolatWrktRnfzzTe7ZqA98MADys3N1RtvvKEmTZqcdYb+zTffrOjoaHXu3FlRUVHas2ePXn31Vd1yyy3n3LMeAFA2p/Tt21crV67UbbfdpltuuUVpaWlatGiRLr/88nKL0+fKbDbr008/1U033aTevXvrX//6l6644opzPk/Dhg31yCOPaPLkyVq7dq169eqlN998U71791abNm00YsQINW3aVIcOHdLGjRsVEhKiTz75RJL0zDPP6PPPP1fnzp2VnJzsKkZfccUVroLw2bzwwgvauHGjOnXqpPvvv1+XX365srOztXPnTn3xxReuIuvZ8lZOTo7i4uJ0xx13qF27dmrUqJG++OILbdu2TXPnzvX4+v369VP37t315JNP6sCBA2rXrp0+//xz/f3vf9f48ePL/dxS1R555BHNmzdPL7zwgt57770K1yvuu+8+ZWdn66abblJcXJwsFosWLFigq666ytXT/XQNGzbUjBkz9MADD+imm27Sn/70J6WlpWnJkiVlvvO3adNGf/jDHzRlyhRlZ2crPDxc7733XpkJgK1bt1ZiYqIeffRRHTp0SCEhIfroo48q1Cd++vTp2rRpk2655RY1b95cR48e1cKFCxUXF1funY2oJQwANe6hhx4yTv/Pr2vXrkabNm3KPd7pdBqPP/64cdFFFxkXXHCB0bNnT2Pfvn1G8+bNjWHDhrkde+LECWPKlCnGJZdcYgQGBhoXXXSRcf311xtz5swxioqKzhjXmWL48ssvDUnG008/7Rr76KOPjC5duhjBwcFGcHCw0bp1a+Ohhx4yfv75Z8MwDGP//v3GyJEjjcTERCMoKMgIDw83unfvbnzxxRdu5y7vOn744Qeja9euRlBQkNG0aVPjueeeM9566y1DkpGWlnbO701hYaExadIkIyYmxjCbzUbnzp2NzZs3G127djW6du3qOi4tLc2QZCxZssQwDMP47bffjIceesho3bq1ERwcbISGhhqdOnUy3n///TO+lwCAuuWHH34w7r77biMmJsZo2LChER0dbdx9993Gjz/+WObYJUuWGJI8PtLT040ffvjBmDx5snH11Vcb4eHhRkBAgBETE2Pceeedxs6dO88aT+lrbNu2rcw+p9NpJCYmGomJiYbD4TAMwzBSU1ONe++914iOjjYaNmxoNG3a1Ojbt6/x4Ycfup43Y8YM49prrzXCwsIMs9lstG7d2pg5c6bb54enn366zGeYgoIC4+GHHzYiIiKM4OBgo1+/fkZ6enqZzw2GYRiff/65ccUVVxiBgYHGpZdeavz1r38t95yrV682rrzySiMoKMho0aKFMXv2bOPtt98u8zng9Dz++uuvGzfeeKMRERFhmEwmIzEx0Zg8ebJx/Pjxs76nAFBfnUtOKSkpMZ5//nmjefPmhslkMtq3b298+umnxrBhw4zmzZu7nlf6veqll14qc87T88OwYcOM4OBgt2N+++034/LLLzeio6ONvXv3eoy9NIdYrdYy+44fP26Ehoa65YnvvvvOuP322115onnz5sZdd91lrF+/3u2569evN9q3b28EBgYaiYmJxptvvmlMmjTJCAoKKnMtDz30ULmxZWZmGg899JARHx/v+uzQo0cPY/Hixa5jzpa37Ha7MXnyZKNdu3ZG48aNjeDgYKNdu3bGwoUL3V7r9PffME7WBiZMmGDExsYaDRs2NFq2bGm89NJLRklJSYWuobzv6ac709+zYRjG8OHDjQYNGhj79u1zxXS2esWHH35o3HzzzUaTJk2MwMBAo1mzZsYDDzxgHDlyxHXejRs3GpKMjRs3ur3ewoULjYSEBMNkMhkdO3Y0Nm3aVOazgmGc/FyUlJRkmEwmIyoqyvjzn/9srFu3rsw5f/rpJyMpKclo1KiRcdFFFxn333+/8f3337vVDAyj7Oej9evXG/379zdiY2ONwMBAIzY21rj77ruNX3755YzvJ3ybn2FUcJUAAAAAAAAAoB4aMGCAdu/eXe76XQDqPnqiAwAAAAAAAL8rKChw2967d6/++c9/VnqxUwC1HzPRAQAAAAAAgN/FxMRo+PDhuvjii2WxWJSSkiK73a7vvvtOLVu29HZ4ALyAhUUBAAAAAACA3/Xq1Ut/+9vflJGRIZPJpOuuu07PP/88BXSgHmMmOgAAAAAAAAAAHtATHQAAAAAAAAAADyiiAwAAAAAAAADgAT3RJZWUlOjw4cNq3Lix/Pz8vB0OAACSJMMwdOLECcXGxsrfn9+9T0XuBgD4InK3Z+RuAIAvqmjupogu6fDhw4qPj/d2GAAAlCs9PV1xcXHeDsOnkLsBAL6M3F0WuRsA4MvOlrspoktq3LixpJNvVkhIiJejAQDgJJvNpvj4eFeewv+QuwEAvojc7Rm5GwDgiyqauymiS65byUJCQkjmAACfwy3PZZG7AQC+jNxdFrkbAODLzpa7adIGAAAAAAAAAIAHFNEBAAAAAAAAAPCAIjoAAAAAAAAAAB5QRAcAAAAAAAAAwAOK6AAAAAAAAAAAeEARHQAAAAAAAAAADyiiAwAAAAAAAADggVeL6Js2bVK/fv0UGxsrPz8/rVq1yuOxY8aMkZ+fn+bNm+c2np2drSFDhigkJERhYWEaNWqUcnNzqzdwAAAAAAAAAEC94NUiel5entq1a6fXXnvtjMd9/PHH2rJli2JjY8vsGzJkiHbv3q1169bp008/1aZNmzR69OjqChkAAAAAAAAAUI8EePPFe/furd69e5/xmEOHDmncuHH67LPPdMstt7jt27Nnj9auXatt27apY8eOkqQFCxaoT58+mjNnTrlFdwAAAAAAAAAAKsqne6KXlJRo6NChmjx5stq0aVNm/+bNmxUWFuYqoEtSUlKS/P39tXXrVo/ntdvtstlsbg8AAAAAAAAAAE7n00X02bNnKyAgQA8//HC5+zMyMtSkSRO3sYCAAIWHhysjI8PjeWfNmqXQ0FDXIz4+vkrjBgAAAAAAAADUDT5bRN+xY4f+8pe/aOnSpfLz86vSc0+ZMkXHjx93PdLT06v0/AAAAAAAAACAusFni+hfffWVjh49qmbNmikgIEABAQGyWCyaNGmSWrRoIUmKjo7W0aNH3Z7ncDiUnZ2t6Ohoj+c2mUwKCQlxewAAAAAAAAAAcDqvLix6JkOHDlVSUpLbWM+ePTV06FCNGDFCknTdddcpJydHO3bsUIcOHSRJGzZsUElJiTp16lTjMQMAAAAAAAAA6havzkTPzc3Vrl27tGvXLklSWlqadu3apYMHDyoiIkJXXHGF26Nhw4aKjo7WpZdeKkm67LLL1KtXL91///369ttv9c0332js2LEaNGiQYmNjvXhlAADUTZs2bVK/fv0UGxsrPz8/rVq1yuOxY8aMkZ+fn+bNm+c2np2drSFDhigkJERhYWEaNWqUcnNzqzdwAAAAAAAqyasz0bdv367u3bu7tidOnChJGjZsmJYuXVqhcyxfvlxjx45Vjx495O/vr4EDB2r+/PnVES5Qq1itVtlsNtd2SEiIIiMjvRgRgLogLy9P7dq108iRI3X77bd7PO7jjz/Wli1byv1Re8iQITpy5IjWrVun4uJijRgxQqNHj9aKFSuqM3Sg1iGXAwBQu5C7gbrLq0X0bt26yTCMCh9/4MCBMmPh4eF86QZOY7ValTx4sOxZWa4xU0SEUlasIIEDOC+9e/dW7969z3jMoUOHNG7cOH322We65ZZb3Pbt2bNHa9eu1bZt29SxY0dJ0oIFC9SnTx/NmTOHO8mA31mtVo0cPUYnCgpdY43NQXp78SJyOQAAPshqtSr5vsGy557yPbxRhFLe5Hs4UBf4bE90AJVns9lkz8rSJJNJ8Waz0gsKNDcrSzabjeQNoFqVlJRo6NChmjx5stq0aVNm/+bNmxUWFuYqoEtSUlKS/P39tXXrVt12223lntdut8tut7u2T53hA9RFNptNJwoK1W1osiJi4pR15Fd9+W4KuRwAAB9y6sxzi8WivJxMPX5bsOIjzUq3FmjuJ3wPB+oKiuhAHRZvNisxOPjkxinFJwCoLrNnz1ZAQIAefvjhcvdnZGSoSZMmbmMBAQEKDw9XRkaGx/POmjVLzz77bJXGCtQGETFxim6e4O0wAADAaU6feZ6Xb1dmRrqahLVTYtPfv4eL7+FAXeHVhUUBAEDdsWPHDv3lL3/R0qVL5efnV6XnnjJlio4fP+56pKenV+n5AQAAgHNhs9lkz83SpH4mzRsZplE9AmU4HXI6Hd4ODUA1oIgOAACqxFdffaWjR4+qWbNmCggIUEBAgCwWiyZNmqQWLVpIkqKjo3X06FG35zkcDmVnZys6OtrjuU0mk0JCQtweAAAAgLfFR5qV2DRYMeFB3g4FQDWinQsAAKgSQ4cOVVJSkttYz549NXToUI0YMUKSdN111yknJ0c7duxQhw4dJEkbNmxQSUmJOnXqVOMxAwAAAABwNhTRAQBAheXm5mrfvn2u7bS0NO3atUvh4eFq1qyZIiIi3I5v2LChoqOjdemll0qSLrvsMvXq1Uv333+/Fi1apOLiYo0dO1aDBg1SbGxsjV4LAAAAAAAVQTsXAABQYdu3b1f79u3Vvn17SdLEiRPVvn17TZs2rcLnWL58uVq3bq0ePXqoT58+6tKlixYvXlxdIQMAAAAAcF6YiQ4AACqsW7duMgyjwscfOHCgzFh4eLhWrFhRhVEBAAAAAFB9mIkOAAAAAAAAAIAHFNEBAAAAAAAAAPCAIjoAAAAAAAAAAB5QRAcAAAAAAAAAwAOK6AAAAAAAAAAAeEARHQAAAAAAAAAADyiiAwAAAAAAAADgAUV0AAAAAAAAAAA8oIgOAAAAAAAAAIAHFNEBAAAAAAAAAPAgwNsBAAAAAAAAAL7OarXKZrNJkiwWixwOh5cjAlBTKKIDAAAAAAAAZ2C1WpV832DZc7MkSXn5dmVmpMteHOrlyADUBIroAAAAAAAAwBnYbDbZc7M0qZ9J8ZFmbdlzTDOXOeR0MhsdqA/oiQ4AAAAAAABUQHykWYlNgxUTHuTtUADUIIroAAAAAAAAAAB4QBEdAAAAAAAAAAAPKKIDAAAAAAAAAOABRXQAAAAAAAAAADygiA4AAAAAAAAAgAcB3g4AAAAAAAAAqGvsRcWyWCyu7ZCQEEVGRnoxIgCVRREdgCTJarXKZrNJIrEDAAAAAHA+smxF2p9m0QvTxslkMkmSTI0ilPLmCr5vA7UQRXQAslqtSh48WPasLEmSKSJCKStI7AAAAAAAVEZugVOB/g5N6BuoVvFhSrcWaO4nWbLZbHzXBmohiugAZLPZZM/K0qTffx2fm0ViBwAAAADgfMVFBimxafDvW3avxgKg8iiiA3XEqe1YLBaLHA7HOZ8j3mw++Qc7iR0AAAAAAACQJH9vBwDg/JW2Yxl/550af+edmjFunA4eOCB7cbG3QwMAAADgRZs2bVK/fv0UGxsrPz8/rVq1yrWvuLhYjz/+uNq2bavg4GDFxsbq3nvv1eHDh93OkZ2drSFDhigkJERhYWEaNWqUcnNza/hKAADwHoroQB1wajuWeWFhGhUYKMPhkLMSs9EBAAAA1B15eXlq166dXnvttTL78vPztXPnTk2dOlU7d+7UypUr9fPPP+vWW291O27IkCHavXu31q1bp08//VSbNm3S6NGja+oSAADwOtq5AHVIvNmsxOBgWQoKvB0KAAAAAB/Qu3dv9e7du9x9oaGhWrdundvYq6++qmuvvVYHDx5Us2bNtGfPHq1du1bbtm1Tx44dJUkLFixQnz59NGfOHMXGxlb7NQAA4G3MRAcAAAAAAJKk48ePy8/PT2FhYZKkzZs3KywszFVAl6SkpCT5+/tr69atHs9jt9tls9ncHgAA1FbMRAcAAAC84NRFwSUpJCREkZGRXowIQH1XWFioxx9/XHfffbdCQkIkSRkZGWrSpInbcQEBAQoPD1dGRobHc82aNUvPPvtstcYLAEBNoYgOAAAA1DCr1aqRo8foREGha6yxOUhvL15EIR2AVxQXF+uuu+6SYRhKSUk57/NNmTJFEydOdG3bbDbFx8ef93kBAPAGiugAAABADbPZbDpRUKhuQ5MVEROnrCO/6st3U2Sz2SiiA6hxpQV0i8WiDRs2uGahS1J0dLSOHj3qdrzD4VB2draio6M9ntNkMslkMlVbzAAA1CSK6EA9deot5BaLRQ6Hw8sRAQBQ/0TExCm6eYK3wwBQj5UW0Pfu3auNGzcqIiLCbf91112nnJwc7dixQx06dJAkbdiwQSUlJerUqZM3QgYAoMZRRAfqIavVquTBg2XPypIk5dntykxPlz00VKaGDb0cHQAAAICqkpubq3379rm209LStGvXLoWHhysmJkZ33HGHdu7cqU8//VROp9PV5zw8PFyBgYG67LLL1KtXL91///1atGiRiouLNXbsWA0aNEixsbHeuiwAAGoURXSgHrLZbLJnZWmSyaR4s1lbjh3TTIdDTodDoogOAIBXFBXZZbFYJHGXGICqs337dnXv3t21XdqnfNiwYXrmmWe0evVqSdJVV13l9ryNGzeqW7dukqTly5dr7Nix6tGjh/z9/TVw4EDNnz+/RuIHAMAXUEQH6rF4s1mJwcGyFBR4OxQAAOq1EznZSkvdryefe14mk0kF+Xk6nJGp4uIib4cGoJbr1q2bDMPwuP9M+0qFh4drxYoVVRkWAAC1CkV0AAAAwMsK8/Pk37Chug5NVtMWidq7a5s+WjhHTqfT26EBAAAA9Z6/N19806ZN6tevn2JjY+Xn56dVq1a59hUXF+vxxx9X27ZtFRwcrNjYWN177706fPiw2zmys7M1ZMgQhYSEKCwsTKNGjVJubm4NXwkAAABw/iKiYxXdPEFhTaK9HQoAAACA33m1iJ6Xl6d27drptddeK7MvPz9fO3fu1NSpU7Vz506tXLlSP//8s2699Va344YMGaLdu3dr3bp1+vTTT7Vp0yaNHj26pi4BAAAAAAAAAFCHebWdS+/evdW7d+9y94WGhmrdunVuY6+++qquvfZaHTx4UM2aNdOePXu0du1abdu2TR07dpQkLViwQH369NGcOXNYKRwAAAAAAAAAcF68OhP9XB0/flx+fn4KCwuTJG3evFlhYWGuArokJSUlyd/fX1u3bvVSlAAAAAAAAIA7e1GxLBaLUlNTZbVavR0OgHNQaxYWLSws1OOPP667775bISEhkqSMjAw1adLE7biAgACFh4crIyPD47nsdrvsdrtr22azVU/QAAAAAAAAqPeybEXan2bRC9PGyWQyydQoQilvrlBkZKS3QwNQAbViJnpxcbHuuusuGYahlJSU8z7frFmzFBoa6nrEx8dXQZQAAAAAAABAWbkFTgX6OzShb6Am9TPJnpvFpE6gFvH5InppAd1isWjdunWuWeiSFB0draNHj7od73A4lJ2drejoaI/nnDJlio4fP+56pKenV1v8AAAAAAAAqH2sVqtSU1OVmpoqi8Uih8Nx3ueMiwxSfKS5CqIDUJN8uoheWkDfu3evvvjiC0VERLjtv+6665STk6MdO3a4xjZs2KCSkhJ16tTJ43lNJpNCQkLcHgAA4Ow2bdqkfv36KTY2Vn5+flq1apVrX3FxsR5//HG1bdtWwcHBio2N1b333qvDhw+7nSM7O1tDhgxRSEiIwsLCNGrUKOXm5tbwlQAAAACeWa1WJd83WONH36nxo+/UjCfH6eDBA7IXF3s7NABe4NUiem5urnbt2qVdu3ZJktLS0rRr1y4dPHhQxcXFuuOOO7R9+3YtX75cTqdTGRkZysjIUFFRkSTpsssuU69evXT//ffr22+/1TfffKOxY8dq0KBBio2N9eKVAQBQN+Xl5aldu3Z67bXXyuzLz8/Xzp07NXXqVO3cuVMrV67Uzz//rFtvvdXtuCFDhmj37t1at26dPv30U23atEmjR4+uqUsA6oxTZ8exOBkAAFXLZrPJnpulSf1MmjcyTKN6BMpwOuR0nv9sdAC1j1cXFt2+fbu6d+/u2p44caIkadiwYXrmmWe0evVqSdJVV13l9ryNGzeqW7dukqTly5dr7Nix6tGjh/z9/TVw4EDNnz+/RuIHahN78clVwCVV2W1oAOqf3r17q3fv3uXuCw0N1bp169zGXn31VV177bU6ePCgmjVrpj179mjt2rXatm2bOnbsKElasGCB+vTpozlz5vAjOFBBVqtVI0eP0YmCQklSY3OQ3l68iMXJAACoYvGRZiU2DZYls8DboQDwIq8W0bt16ybDMDzuP9O+UuHh4VqxYkVVhgXUOVlFRdpvseiFcSdXAc+z25WZni57aKi3QwNQxx0/flx+fn4KCwuTJG3evFlhYWGuArokJSUlyd/fX1u3btVtt93mpUiB2sVms+lEQaG6DU2WJH35bopsNhtFdAAAAKAaeLWIDqBm5DqdCnQ4NCEwUK3CwrTl2DHNdDjkZDY6gGpUWFioxx9/XHfffbdr/ZGMjAw1adLE7biAgACFh4crIyPD47nsdrvsdrtr22azVU/QQC0TERPn7RAAAACAOs+nFxYFULXigoKUGBysmKAgb4cCoI4rXRzcMAylpKSc9/lmzZql0NBQ1yM+Pr4KogQAAAAA4OwoogMAgCpVWkC3WCxat26daxa6JEVHR+vo0aNuxzscDmVnZys6OtrjOadMmaLjx4+7Hunp6dUWPwAAAAAAp6KdCwAAqDKlBfS9e/dq48aNioiIcNt/3XXXKScnRzt27FCHDh0kSRs2bFBJSYk6derk8bwmk0kmk6laYwd8XVGRnUXCAQAAAC+giA4AACosNzdX+/btc22npaVp165dCg8PV0xMjO644w7t3LlTn376qZxOp6vPeXh4uAIDA3XZZZepV69euv/++7Vo0SIVFxdr7NixGjRokGJjY711WYDPO5GTrbTU/XryuedlMplUkJ+nwxmZKi4uUsOGgd4ODwAAAKjTKKIDAIAK2759u7p37+7anjhxoiRp2LBheuaZZ7R69WpJ0lVXXeX2vI0bN6pbt26SpOXLl2vs2LHq0aOH/P39NXDgQM2fP79G4gdqq8L8PPk3bKiuQ5PVtEWi9u7apo8WzpHT6VTDht6ODgAAAKjbKKIDAIAK69atmwzD8Lj/TPtKhYeHa8WKFVUZFlBvRETHKrp5gqyHWRcAAAAAqCksLAoAAAAAAAAAgAcU0QEAAAAAAAAA8IAiOgAAAAAAAAAAHlBEBwAAAAAAAADAA4roAAAAAAAAAAB4QBEdAAAAAAAAAAAPKKIDAAAAAAAAAOABRXQAAAAAAAAAADwI8HYAAAAAAAAAQH1iLyqWxWJxbYeEhCgyMtKLEQE4E4roAAAAAAAAQA3JshVpf5pFL0wbJ5PJJEkyNYpQypsrKKQDPooiOgAAAAAAAFBDcgucCvR3aELfQLWKD1O6tUBzP8mSzWajiA74KIroAAAAAAAAQA2LiwxSYtPg37fsXo0FwJlRRAcAAABqgNVqlc1mkyRZLBY5HA4vRwQAAACgIiiiAwAAANXMarVq5OgxOlFQKEkqyM/T4YxMFRcXeTkyAAAAAGdDER2opZjNBgBA7WGz2XSioFDdhiYrIiZOe3dt00cL58jpdHo7NAAAAABnQREdqIWsVquSBw+WPStLkpRntyszPV320FAvRwYAAM4kIiZO0c0TZD2c7u1QAAAAAFSQv7cDAHDubDab7FlZmmQyaV5YmEYFBspwOORkNjoAAAAAAABQpZiJDtRi8WazEoODZSko8HYoAAAAAACgkuxFxbJYLK7tkJAQRUZGejEiAKeiiA4AAAAAAAB4SZatSPvTLHph2jiZTCZJkqlRhFLeXEEhHfARFNEBAAAAAAAAL8ktcCrQ36EJfQPVKj5M6dYCzf0kSzabjSI64CMoogMAAAAAAABeFhcZpMSmwb9v2d32Wa1W2Ww21zbtXoCaRREdAAAAAAAA8FFWq1XJ9w2WPTfLNUa7F6BmUUQHAAAAAAAAfJTNZpM9N0uT+pkUH2mm3QvgBRTRAQAAAAAAAB8XH2n22O4FQPXy93YAAAAAAAAAAAD4KoroAAAAAAAAAAB4QBEdAAAAAAAAAAAPKKIDAAAAAAAAAOABRXQAZ2W1WpWamup67Nmzx23barV6O0QAAHCK03M3uRqovzZt2qR+/fopNjZWfn5+WrVqldt+wzA0bdo0xcTEyGw2KykpSXv37nU7Jjs7W0OGDFFISIjCwsI0atQo5ebm1uBVAADgXQHeDgCAb7NarUoePFj2rCxJkr24WGmHD+uSpk0VEHDyfyGmiAilrFihyMhIb4YKAAB0MnePHD1GJwoKXWONzUF6e/EicjVQD+Xl5aldu3YaOXKkbr/99jL7X3zxRc2fP1/vvPOOEhISNHXqVPXs2VM//fSTgoKCJElDhgzRkSNHtG7dOhUXF2vEiBEaPXq0VqxYUdOXAwCAV1BEB3BGNptN9qwsTTKZFG82a8uxY5pZUKCHGzRQq7AwpRcUaG5Wlmw2G1/MAQDwATabTScKCtVtaLIiYuKUdeRXffluCrkaqKd69+6t3r17l7vPMAzNmzdPTz31lPr37y9JWrZsmaKiorRq1SoNGjRIe/bs0dq1a7Vt2zZ17NhRkrRgwQL16dNHc+bMUWxsbI1dCwAA3kI7FwAVEm82KzE4WDG/z0aJCwpSYnCw4s1mL0cGAADKExETp+jmCYqIifN2KAB8VFpamjIyMpSUlOQaCw0NVadOnbR582ZJ0ubNmxUWFuYqoEtSUlKS/P39tXXrVo/nttvtstlsbg8AAGoriugAAAAAANRDGRkZkqSoqCi38aioKNe+jIwMNWnSxG1/QECAwsPDXceUZ9asWQoNDXU94uPjqzh6AABqDkV0AAAAAABQpaZMmaLjx4+7Hunp6d4OCQCASqOIDgAAAABAPRQdHS1JyszMdBvPzMx07YuOjtbRo0fd9jscDmVnZ7uOKY/JZFJISIjbAwCA2ooiOgAAAAAA9VBCQoKio6O1fv1615jNZtPWrVt13XXXSZKuu+465eTkaMeOHa5jNmzYoJKSEnXq1KnGYwYAwBsCvB0AAN9jLy6WxWKRJFksFjkcDi9HBAAAAKAycnNztW/fPtd2Wlqadu3apfDwcDVr1kzjx4/XjBkz1LJlSyUkJGjq1KmKjY3VgAEDJEmXXXaZevXqpfvvv1+LFi1ScXGxxo4dq0GDBik2NtZLVwUAQM2iiA7ATVZRkfZbLHph3DiZTCbl2e3KTE+XPTTU26EBAAAPiors5/QDuNVqlc1mc22HhIQoMjKyWmME4B3bt29X9+7dXdsTJ06UJA0bNkxLly7VY489pry8PI0ePVo5OTnq0qWL1q5dq6CgINdzli9frrFjx6pHjx7y9/fXwIEDNX/+/Bq/FgAAvMWrRfRNmzbppZde0o4dO3TkyBF9/PHHrl+7JckwDD399NN64403lJOTo86dOyslJUUtW7Z0HZOdna1x48bpk08+cSXzv/zlL2rUqJEXrgio/XKdTgU6HJoQGKhWYWHacuyYZjoccjIbHQAAn3QiJ1tpqfv15HPPy2QyqSA/T4czMlVcXFTu8VarVSNHj9GJgkLXWGNzkN5evIhCOlAHdevWTYZheNzv5+en6dOna/r06R6PCQ8P14oVK6ojPAAAagWv9kTPy8tTu3bt9Nprr5W7/8UXX9T8+fO1aNEibd26VcHBwerZs6cKC//3gX/IkCHavXu31q1bp08//VSbNm3S6NGja+oSgDorLihIicHBijllBgoAAPA9hfl58m/YUF2HJmvgYzPVacAQlZSUyOl0lnu8zWbTiYJCdfv9+G5Dk3WioNBtZjoAAACA//HqTPTevXurd+/e5e4zDEPz5s3TU089pf79+0uSli1bpqioKK1atUqDBg3Snj17tHbtWm3btk0dO3aUJC1YsEB9+vTRnDlz6M8GAACAeiMiOlbRzRNkPZxeseNj4hTdPKGaowIAAABqP6/ORD+TtLQ0ZWRkKCkpyTUWGhqqTp06afPmzZKkzZs3KywszFVAl6SkpCT5+/tr69atNR4zAAAAAAAAAKBu8dmFRTMyMiRJUVFRbuNRUVGufRkZGWrSpInb/oCAAIWHh7uOKY/dbpfdbndtc+sqAAAAAAAAAKA8PjsTvTrNmjVLoaGhrkd8fLy3QwIAAAAAAAAkSfaiYlksFqWmpspiscjhcHg7JKBe89kienR0tCQpMzPTbTwzM9O1Lzo6WkePHnXb73A4lJ2d7TqmPFOmTNHx48ddj/T0ivWNBACgvtu0aZP69eun2NhY+fn5adWqVW77DcPQtGnTFBMTI7PZrKSkJO3du9ftmOzsbA0ZMkQhISEKCwvTqFGjlJubW4NXAQAAAPiuLFuR9qdZ9MK0cRo/+k7NeHKcDh48IHtxsbdDA+otny2iJyQkKDo6WuvXr3eN2Ww2bd26Vdddd50k6brrrlNOTo527NjhOmbDhg0qKSlRp06dPJ7bZDIpJCTE7QEAAM4uLy9P7dq102uvvVbu/hdffFHz58/XokWLtHXrVgUHB6tnz54qLCx0HTNkyBDt3r1b69at06effqpNmzZp9OjRNXUJAAAAgE/LLXAq0N+hCX0DNW9kmEb1CJThdMjpZDY64C1e7Ymem5urffv2ubbT0tK0a9cuhYeHq1mzZho/frxmzJihli1bKiEhQVOnTlVsbKwGDBggSbrsssvUq1cv3X///Vq0aJGKi4s1duxYDRo0SLGxsV66KgAA6q7evXurd+/e5e4zDEPz5s3TU089pf79+0uSli1bpqioKK1atUqDBg3Snj17tHbtWm3bts21MPiCBQvUp08fzZkzh/wNAAAA/C4uMkiJTYNlySzwdihAvefVmejbt29X+/bt1b59e0nSxIkT1b59e02bNk2S9Nhjj2ncuHEaPXq0rrnmGuXm5mrt2rUKCgpynWP58uVq3bq1evTooT59+qhLly5avHixV64HAID6LC0tTRkZGUpKSnKNhYaGqlOnTtq8ebMkafPmzQoLC3MV0CUpKSlJ/v7+2rp1a43HDAAAAADA2Xh1Jnq3bt1kGIbH/X5+fpo+fbqmT5/u8Zjw8HCtWLGiOsIDAADnICMjQ5IUFRXlNh4VFeXal5GRoSZNmrjtDwgIUHh4uOuY8tjtdtntdte2zWarqrABAAAAADgjn+2JDgAAUGrWrFkKDQ11PeLj470dEgAAAACgnqCIDtQSVqtVqampSk1NlcVikcPBgiIAfEt0dLQkKTMz0208MzPTtS86OlpHjx512+9wOJSdne06pjxTpkzR8ePHXY/09PQqjh4AAAAAgPJ5tZ0LgIqxWq1KHjxY9qwsSVKe3a7M9HTZQ0O9HBkA/E9CQoKio6O1fv16XXXVVZJOtl3ZunWrkpOTJUnXXXedcnJytGPHDnXo0EGStGHDBpWUlKhTp04ez20ymWQymar9GgAAAAAAOB1FdKAWsNlssmdlaZLJpHizWVuOHdNMh0NOZqMDqGG5ubnat2+fazstLU27du1SeHi4mjVrpvHjx2vGjBlq2bKlEhISNHXqVMXGxmrAgAGSpMsuu0y9evXS/fffr0WLFqm4uFhjx47VoEGDFBsb66WrAgAAAADAM4roQC0SbzYrMThYloICb4cCoJ7avn27unfv7tqeOHGiJGnYsGFaunSpHnvsMeXl5Wn06NHKyclRly5dtHbtWgUFBbmes3z5co0dO1Y9evSQv7+/Bg4cqPnz59f4tQD1SVGRXRaLRZJoCwcAAACcI4roAACgwrp16ybDMDzu9/Pz0/Tp0zV9+nSPx4SHh2vFihXVER6AcpzIyVZa6n49+dzzMplMKsjP0+GMTBUXF3k7NAAAfIrVapXNZpPk+z8624uKXT+QS1JISIgiIyO9GBFQt1FEBwAAAOqwwvw8+TdsqK5Dk9W0RaL27tqmjxbOkdPp9HZoAAD4DKvVquT7Bsue+/taZPl2ZWaky17se2uRZdmKtD/NohemjXOtG2RqFKGUN1dQSAeqCUV0AFXu1F/vJX4RBwDAF0RExyq6eYKsh9O9HQoAAD7HZrPJnpulSf1Mio80a8ueY5q5zCGn0/dmo+cWOBXo79CEvoFqFR+mdGuB5n6SJZvNxndvoJpQRAdQpaxWq5IHD5Y9K8s1ZoqIUMoKfhEHAAAAAPi2+EizEpsGy5Lp+2uRxUUGKbFp8O9bdq/GAtR1FNEBnDd7cbHbYmV5mZl6PDhY8Waz0gsKNDeLX8QBAAAAAABQO1FEB3BesoqKtN9i0QvjTvZiy7PblZmeribt2ikx+PdfxO38Ig4AAAAAAIDayd/bAQCo3XKdTgU6HJoQGKh5YWEaFRgow+GQ04dXMQcAAAAAAAAqiiI6gCoRFxSkxOBgxQQFeTsUAAAAAAAAoMpQRAcAAAAAAAAAwAOK6AAAAAAAAAAAeEARHQAAAAAAAAAADyiiAwAAAAAAAADgAUV0AAAAAAAAAAA8CPB2AAAAAEBdZLVaZbPZJEkWi0UOh8PLEQEAAACoDIroAAAAQBWzWq0aOXqMThQUSpIK8vN0OCNTxcVFXo4MAAAAwLmiiA4AAABUMZvNphMFheo2NFkRMXHau2ubPlo4R06n09uhAQAAADhH9EQHAAAAqklETJyimycorEm0t0MBAAAAUEkU0QEAAAAAAAAA8IAiOgAAAAAAAAAAHlBEBwAAAAAAAADAA4roAAAAAAAAAAB4QBEdAAAAAAAAAAAPKKIDAAAAAAAAAOBBgLcDAAAAAAAAALzBarXKZrPJYrHI4XB4OxwAPooiOuDDSOYAAAAAAFQPq9Wq5PsGy56bpbx8uzIz0mUvDvV2WAB8EEV0wEdZrVYlDx4se1aW8ux2Zaanyx5KMgcAAAAAoCrYbDbZc7M0qZ9Jh34zNHOZQ04nE9gAlEURHfBRNptN9qwsTTKZdMgwNNPhkJPZ6AAAoBoUFdllsVhc2yEhIYqMjPRiRAAA1Jz4SLNKSrwdBQBfRhEd8HHxZrPI5QAAoLqcyMlWWup+Pfnc8zKZTJKkxuYgvb14EYV0AAAAQBTRAQAAgHqtMD9P/g0bquvQZDVtkaisI7/qy3dTZLPZKKIDAAAAoogOAAAAQFJEdKyimyd4OwwAAADA5/h7OwAAAAAAAAAAAHwVRXQAAAAAAAAAADyoVBF9//79VR0HAACoRuRuAABql5rK3U6nU1OnTlVCQoLMZrMSExP13HPPyTAM1zGGYWjatGmKiYmR2WxWUlKS9u7dWyPxAQDgCypVRL/kkkvUvXt3/fWvf1VhYWFVxwQAAKoYuRsAgNqlpnL37NmzlZKSoldffVV79uzR7Nmz9eKLL2rBggWuY1588UXNnz9fixYt0tatWxUcHKyePXvymQIAUG9Uqoi+c+dOXXnllZo4caKio6P1wAMP6Ntvv63q2AAAQBUhdwMAULvUVO7+97//rf79++uWW25RixYtdMcdd+jmm292vZZhGJo3b56eeuop9e/fX1deeaWWLVumw4cPa9WqVVUeDwAAvqhSRfSrrrpKf/nLX3T48GG9/fbbOnLkiLp06aIrrrhCL7/8sqxWa1XHCQAAzgO5GwCA2qWmcvf111+v9evX65dffpEkff/99/r666/Vu3dvSVJaWpoyMjKUlJTkek5oaKg6deqkzZs3ezyv3W6XzWZzewAAUFud18KiAQEBuv322/XBBx9o9uzZ2rdvnx599FHFx8fr3nvv1ZEjR6oqTgAAUAXI3QAA1C7VnbufeOIJDRo0SK1bt1bDhg3Vvn17jR8/XkOGDJEkZWRkSJKioqLcnhcVFeXaV55Zs2YpNDTU9YiPjz+vOAEA8KbzKqJv375dDz74oGJiYvTyyy/r0UcfVWpqqtatW6fDhw+rf//+VRUnAACoAuRuAABql+rO3e+//76WL1+uFStWaOfOnXrnnXc0Z84cvfPOO+d13ilTpuj48eOuR3p6+nmdDwAAbwqozJNefvllLVmyRD///LP69OmjZcuWqU+fPvL3P1mTT0hI0NKlS9WiRYuqjBUAAFQSuRsAgNqlpnL35MmTXbPRJalt27ayWCyaNWuWhg0bpujoaElSZmamYmJiXM/LzMzUVVdd5fG8JpNJJpPpvGIDAMBXVKqInpKSopEjR2r48OFuSfRUTZo00VtvvXVewQEAgKpB7gYAoHapqdydn5/vKsyXatCggUpKSiSdLNZHR0dr/fr1rqK5zWbT1q1blZycfF6vDQBAbVGpIvrevXvPekxgYKCGDRtWmdO7OJ1OPfPMM/rrX/+qjIwMxcbGavjw4Xrqqafk5+cn6eRK4U8//bTeeOMN5eTkqHPnzkpJSVHLli3P67UBAKhLaip3AwCAqlFTubtfv36aOXOmmjVrpjZt2ui7777Tyy+/rJEjR0qS/Pz8NH78eM2YMUMtW7ZUQkKCpk6dqtjYWA0YMOC8XhsAgNqiUkX0JUuWqFGjRrrzzjvdxj/44APl5+dX2Rfw2bNnKyUlRe+8847atGmj7du3a8SIEQoNDdXDDz8sSXrxxRc1f/58vfPOO65k3rNnT/30008KCgqqkjgAAKjtaip3AwCAqlFTuXvBggWaOnWqHnzwQR09elSxsbF64IEHNG3aNNcxjz32mPLy8jR69Gjl5OSoS5cuWrt2Ld+5gVrKarXKZrO5tkNCQhQZGenFiADfV6mFRWfNmqWLLrqozHiTJk30/PPPn3dQpf7973+rf//+uuWWW9SiRQvdcccduvnmm/Xtt99KOjkLfd68eXrqqafUv39/XXnllVq2bJkOHz6sVatWVVkcAADUdjWVuwEAQNWoqdzduHFjzZs3TxaLRQUFBUpNTdWMGTMUGBjoOsbPz0/Tp09XRkaGCgsL9cUXX6hVq1ZVFgOAmmO1WpV832CNH32n65F832BZrVZvhwb4tEoV0Q8ePKiEhIQy482bN9fBgwfPO6hS119/vdavX69ffvlFkvT999/r66+/Vu/evSVJaWlpysjIUFJSkus5oaGh6tSpkzZv3uzxvHa7XTabze0BAEBdVlO5G6jvrFarUlNTZbFY5HA4vB0OgFqM3A2gOthsNtlzszSpn0nzRoZpUj+T7LlZ1MaAs6hUO5cmTZrohx9+KLMK+Pfff6+IiIiqiEuS9MQTT8hms6l169Zq0KCBnE6nZs6cqSFDhkiSMjIyJElRUVFuz4uKinLtK8+sWbP07LPPVlmcAAD4uprK3UB9ZrVaNXL0GJ0oKFRBfp4OZ2SquLjI22EBqKXI3QCqyqntW0p/6I+PDFNi0+Dfj7B7LziglqjUTPS7775bDz/8sDZu3Cin0ymn06kNGzbokUce0aBBg6osuPfff1/Lly/XihUrtHPnTr3zzjuaM2eO3nnnnfM675QpU3T8+HHXIz09vYoiBgDAN9VU7nY6nZo6daoSEhJkNpuVmJio5557ToZhuI4xDEPTpk1TTEyMzGazkpKSKrR4GuDrbDabThQUqtvQZHUaMEQlJSVyOp3eDgtALVVTuRtA3XZ6+5YZT47TwYMHZC8u9nZoQK1SqZnozz33nA4cOKAePXooIODkKUpKSnTvvfdWaW+2yZMn64knnnB9QGjbtq0sFotmzZqlYcOGKTo6WpKUmZmpmJgY1/MyMzN11VVXeTyvyWSSyWSqsjgBAPB1NZW7WRQckCJi4lRyyg9HAFAZNZW7AdRtp7ZviY80a8ueY5q5zCGnk7ZzwLmoVBE9MDBQ//d//6fnnntO33//vcxms9q2bavmzZtXaXD5+fny93efLN+gQQOVlJRIkhISEhQdHa3169e7iuY2m01bt25VcnJylcYCAEBtVlO5+9RFwSWpRYsW+tvf/uZxUXBJWrZsmaKiorRq1Spm1gEA8Luayt0A6gZ7UbEsFotrOyQkRJGRka7t+EizEpsGy5JZ4I3wgFqvUkX0Uq1atarWFbn79eunmTNnqlmzZmrTpo2+++47vfzyyxo5cqSkkyuEjx8/XjNmzFDLli1ds9liY2M1YMCAaosLAIDaqrpz9/XXX6/Fixfrl19+UatWrVyLgr/88suSzr4ouKciut1ul93+v16NLHwEVK+iIrvHL+Kn9lU9fR+AqlfduRtA7ZdlK9L+NItemDbO1XnB1ChCKW+u8HJkQN1RqSK60+nU0qVLtX79eh09etQ1M7zUhg0bqiS4BQsWaOrUqXrwwQd19OhRxcbG6oEHHtC0adNcxzz22GPKy8vT6NGjlZOToy5dumjt2rXcDg4AwClqKnezKDhQ+53IyVZa6n49+dzzri/ijc1BenvxIklyLZ5aqnQfhXSgatVU7gZQ++UWOBXo79CEvoFqFR+mdGuB5n6SxcQToApVqoj+yCOPaOnSpbrlllt0xRVXyM/Pr6rjkiQ1btxY8+bN07x58zwe4+fnp+nTp2v69OnVEgMAAHVBTeXuUxcFb9OmjXbt2qXx48crNjZWw4YNq/R5p0yZookTJ7q2bTab4uPjqyJkAKcpzM+Tf8OG6jo0WU1bJCrryK/68t0U1xfx0sVTI2Li3PZRRAeqVk3lbgB1R1xkkBKbBv++ZT/jsQDOTaWK6O+9957ef/999enTp6rjAQAA1aCmcjeLggN1R0R0rKKbJ5S/LybO4z4AVYPv3QAA+A7/sx9SVmBgoC655JKqjgUAAFSTmsrd57IoeKnSRcGvu+66ao8PAIDagu/dAAD4jkoV0SdNmqS//OUvMgyjquMBAADVoKZyd+mi4P/4xz904MABffzxx3r55Zd12223SXJfFHz16tX68ccfde+997IoOAAAp+F7NwAAvqNS7Vy+/vprbdy4UWvWrFGbNm3UsGFDt/0rV66skuAAAEDVqKnczaLgAABUDb53AwDgOypVRA8LC3PNKANQeVar1W217JCQkHqxKNep1322a66v7xFQ1Woqd7MoOAAAVYPv3QDOh72oWBaLRZLkcDi8HA1Q+1WqiL5kyZKqjgOod6xWq5IHD5Y9K8s1ZoqIUMqKFXW6SHz6dZ/pmuvrewRUB3I3AAC1C7kbQGVl2Yq0P82iF6aNk8MpZWaky14c6u2wgFqtUj3RpZO/Yn3xxRd6/fXXdeLECUnS4cOHlZubW2XBAXWZzWaTPStLk0wmzQsL0ySTSfasLLdZ13XRqdd9tmuur+8RUF3I3QAA1C7kbgCVkVvgVKC/QxP6BmpUj0AZToecTmajA+ejUjPRLRaLevXqpYMHD8put+uPf/yjGjdurNmzZ8tut2vRokVVHSdQZ8WbzUoMDj65Ybd7N5gaFG82n/xDBa65vr5HQFUidwMAULuQuwGcr7jIIJkCz/15tFUFyqpUEf2RRx5Rx44d9f333ysiIsI1ftttt+n++++vsuAAAEDVIHcD1ePUL5kWi4WeowCqDLkbgDdYrVYl3zdY9txT2qo2ilDKm7RVRf1WqSL6V199pX//+98KDHT/OatFixY6dOhQlQQGAACqDrkbqHpWq1UjR4/RiYJCSVJBfp4OZ2SquLjIy5EBqAvI3QC8wWazyZ6bpUn9TIqPNCvdWqC5n5xsq0oRHfVZpYroJSUlcjqdZcZ//fVXNW7c+LyDAgAAVYvcDVQ9m82mEwWF6jY0WRExcdq7a5s+Wjin3P/WAOBckbuB6sFdZBUTH2lWYtPf26qKtqpApYroN998s+bNm6fFixdLkvz8/JSbm6unn35affr0qdIAAQDA+SN3A+Wrip6fETFxim6eIOvh9KoOD0A9Ru4Gqt7prUry8u3KzEiXvTjUy5EB8HWVKqLPnTtXPXv21OWXX67CwkINHjxYe/fu1UUXXaS//e1vVR0jAAA4T+RuoKzT27FIUmNzkN5evIjblQF4HbkbqHqntyrZsueYZi5zyOlkNjqAM6tUET0uLk7ff/+93nvvPf3www/Kzc3VqFGjNGTIEJnN5qqOEQAAnCdyN1DW6e1Yso78qi/fTaHnJwCfQO4Gqk9pqxJLZoG3QwFQS1SqiC5JAQEBuueee6oyFgAAUI3I3UD5StuxoHKKiuyyWCyu7cq0xAFQPnI3AAC+oVJF9GXLlp1x/7333lupYACARV6A6kHuBlAdTuRkKy11v5587nmZTCZJtMQBqgq5GwAA31GpIvojjzzitl1cXKz8/HwFBgbqggsuIJkDqBSr1arkwYNlz/p9kRe7XZnp6bKHssgLcL7I3QDOx6mzzU/9gbswP0/+DRuq69BkNW2RSEscoAqRuwEA8B2VKqIfO3aszNjevXuVnJysyZMnn3dQAOonm80me1aWJplMijebteXYMc10OORkNjpw3sjdACrr1NnmJU6HDmdkqri4yO2YiOhYWuIAVYzcDQCA7/CvqhO1bNlSL7zwQplfywHgXMWbzUoMDlZMUFCZffbiYlksFqWmpio1NVVWq9ULEQJ1A7kbQEWcOtu804AhKikpkdPp9HZYQL1E7gYAwDsqvbBouScLCNDhw4er8pQA4JJVVKT9FoteGDfO1XfVFBGhlBUruGUcqCRyN4CKioiOVWBg4Dk/79T1TiQWHgXOF7kb9d255hXW3QJQFSpVRF+9erXbtmEYOnLkiF599VV17ty5SgID6iKSd1mlM8uls78nuU6nAh0OTQgMVKuwMKUXFGhuVhZ9V4EKIHcD8Aar1aqRo8foREGha4yFR4GKIXcDZVmtViXfN1j23CzXmKlRhFLeLH9i1enH5+XblZmRLnsx624BODeVKqIPGDDAbdvPz0+RkZG66aabNHfu3KqIC6hzWDSzrNNnllf0PYkLClJicPDJDbu9BiIFaj9yNwBvsNlsOlFQqG5DkxURE8fCo8A5IHcDZdlsNtlzszSpn0nxkWalWws09xPPE6tOP37LnmOaucwhp5MJbQDOTaWK6CUlJVUdB1DnsWhmWafPLOc9AaoPuRuAN0XExLHwKHCOyN2AZ/GRZiU2/X1ildwnVpV3B3h8ZJgSmwbLkllQw5HWDvaiit8hDtRXVdoTHajvKtKbrXTRTEsBybtU6cxy3hMAAAAAQGXRvuXcZdmKtD/Nohem/X6HOO8ZUK5KFdEnTpxY4WNffvnlyrwEUOuc3q5FYtFLAL6D3A0AQO1C7gbOHe1bzl1ugVOB/g5N6BuoVvFhvGeAB5Uqon/33Xf67rvvVFxcrEsvvVSS9Msvv6hBgwa6+uqrXcf5+flVTZRALXB6uxYWvQTgS8jdAADULuRuoPJK273QvqXi4iKDeM+AM6hUEb1fv35q3Lix3nnnHV144YWSpGPHjmnEiBG64YYbNGnSpCoNEqhNStu1SGLRy9/Zi+mvBngbuRsAgNqF3A0AgO+oVBF97ty5+vzzz12JXJIuvPBCzZgxQzfffDPJHIBLVlGR9lssemHc7/3V7HZlpqfLHkp/NaAmkbsBAKhdyN0AAPgO/8o8yWazyWq1lhm3Wq06ceLEeQcFoO7IdToV6HBoQmCg5oWFaVRgoAyHQ05mowM1itwNAEDtQu4GAMB3VKqIftttt2nEiBFauXKlfv31V/3666/66KOPNGrUKN1+++1VHSOAOiAuKEiJwcGKCQrydihAvUTuBgCgdiF3AwDgOyrVzmXRokV69NFHNXjwYBUXF588UUCARo0apZdeeqlKAwQAAOeP3A0AQO1C7gYAwHdUqoh+wQUXaOHChXrppZeUmpoqSUpMTFRw6WKKAADAp5C7AQCoXcjdAAD4jkq1cyl15MgRHTlyRC1btlRwcLAMw6iquIB6yV5cLIvFotTUVFksFjnoGw6gipG7AQCoXcjdAAB4X6VmomdlZemuu+7Sxo0b5efnp7179+riiy/WqFGjdOGFF2ru3LlVHSdQ52UVFWm/xaIXxo2TyWRSnt2uzPR02UNDvR0agDqA3A2gphQV2WWxWCSJSQHAeSB3AwDgOyo1E33ChAlq2LChDh48qAsuuMA1/qc//Ulr166tsuCA+iTX6VSgw6EJgYGaFxamUYGBMhwOOfniCaAKkLsB1IQTOdlKS92vJ597XqMeelhTnpkuy8GDKi4u8nZoQK1D7gYAwHdUaib6559/rs8++0xxcXFu4y1btnTNOgFQOXFBQUoMDpaloMDboQCoQ8jdQNWwWq2y2WySmGVdnsL8PPk3bKiuQ5PVtEWi9u7apo8WzpHT6fR2aECtQ+4GAMB3VKqInpeX5/ZLeKns7GyZTKbzDgoAAFQtcjdw/qxWq0aOHqMTBYWSpIL8PB3OyGSWdTkiomMV3TxB1sPp3g4FqLXI3QAA+I5KtXO54YYbtGzZMte2n5+fSkpK9OKLL6p79+5VFhwAAKga5G7g/NlsNp0oKFS3ocka+NhMdRowRCUlJcyyBlAtyN0AAPiOSs1Ef/HFF9WjRw9t375dRUVFeuyxx7R7925lZ2frm2++qeoYAQDAeSJ3A1UnIiaOWdYAql1N5u5Dhw7p8ccf15o1a5Sfn69LLrlES5YsUceOHSVJhmHo6aef1htvvKGcnBx17txZKSkpatmyZZXGAQCAr6rUTPQrrrhCv/zyi7p06aL+/fsrLy9Pt99+u7777jslJiZWdYwAAOA8kbsBAKhdaip3Hzt2TJ07d1bDhg21Zs0a/fTTT5o7d64uvPBC1zEvvvii5s+fr0WLFmnr1q0KDg5Wz549VVhYWGVxAADgy855JnpxcbF69eqlRYsW6cknn6yOmAAAQBUidwMAULvUZO6ePXu24uPjtWTJEtdYQkKC68+GYWjevHl66qmn1L9/f0nSsmXLFBUVpVWrVmnQoEHVGh8AAL7gnGeiN2zYUD/88EN1xAIAAKoBuRuoPKvVqtTUVKWmpspiscjhcHg7JAD1QE3m7tWrV6tjx46688471aRJE7Vv315vvPGGa39aWpoyMjKUlJTkGgsNDVWnTp20efPmGokRAABvq1Q7l3vuuUdvvfVWVccCAACqCbkbOHdWq1UjR4/RqIce1qiHHtaUZ6bLcvCgiouLvB0agHqgpnL3/v37Xf3NP/vsMyUnJ+vhhx/WO++8I0nKyMiQJEVFRbk9LyoqyrWvPHa7XTabze0BVAd7UbEsFgs/eAOoVpVaWNThcOjtt9/WF198oQ4dOig4ONht/8svv1wlwQEAgKpB7gbOnc1m04mCQnUbmqyImDjt3bVNHy2cI6fT6e3QANQDNZW7S0pK1LFjRz3//POSpPbt2+s///mPFi1apGHDhlX6vLNmzdKzzz5bJTECnmTZirQ/zaIXpo2TyWRSXr5dmRnpsheHejs0AHXMORXR9+/frxYtWug///mPrr76aknSL7/84naMn59f1UUHAADOC7kbOH8RMXGKbp4g6+F0b4cCoB6o6dwdExOjyy+/3G3ssssu00cffSRJio6OliRlZmYqJibGdUxmZqauuuoqj+edMmWKJk6c6Nq22WyKj4+vsrgBScotcCrQ36EJfQPVKj5MW/Yc08xlDjmdzEYHULXOqYjesmVLHTlyRBs3bpQk/elPf9L8+fPL3NZVlQ4dOqTHH39ca9asUX5+vi655BItWbJEHTt2lHRykZOnn35ab7zxhnJyctS5c2fXrWgAANR33sjdAACg8mo6d3fu3Fk///yz29gvv/yi5s2bSzq5yGh0dLTWr1/vKprbbDZt3bpVycnJHs9rMplkMpmqJWbgdHGRQUpsGixLZoG3QwFQR51TT3TDMNy216xZo7y8vCoN6FTHjh1T586d1bBhQ61Zs0Y//fST5s6dqwsvvNB1zIsvvqj58+dr0aJF2rp1q4KDg9WzZ08VFhZWW1wAANQWNZ27AQDA+anp3D1hwgRt2bJFzz//vPbt26cVK1Zo8eLFeuihhySdnPU+fvx4zZgxQ6tXr9aPP/6oe++9V7GxsRowYEC1xQUAgC+pVE/0Uqcn96o2e/ZsxcfHa8mSJa6xhIQEt9efN2+ennrqKfXv31+StGzZMkVFRWnVqlUaNGhQtcYHAEBtU925GwAAVK3qzt3XXHONPv74Y02ZMkXTp09XQkKC5s2bpyFDhriOeeyxx5SXl6fRo0crJydHXbp00dq1axUUFFStsQEA4CvOaSa6n59fmd5r1dlHdfXq1erYsaPuvPNONWnSRO3bt9cbb7zh2p+WlqaMjAwlJSW5xkJDQ9WpUydt3rzZ43lZJRwAUF/UdO6WTrZiu+eeexQRESGz2ay2bdtq+/btrv2GYWjatGmKiYmR2WxWUlKS9u7dW60xAQBQW3gjd/ft21c//vijCgsLtWfPHt1///1lXn/69OnKyMhQYWGhvvjiC7Vq1apaYwIAwJec00x0wzA0fPhwV1+zwsJCjRkzpswq4StXrqyS4Pbv36+UlBRNnDhRf/7zn7Vt2zY9/PDDCgwM1LBhw5SRkSFJZXrDRUVFufaVh1XCAQD1RU3n7tJWbN27d9eaNWsUGRmpvXv3ltuK7Z133lFCQoKmTp2qnj176qeffmJGGwCg3qvp3A0AAM7unIrow4YNc9u+5557qjSY05WUlKhjx456/vnnJUnt27fXf/7zHy1atKhMLOeCVcIBAPVFTeduWrEBAHB+ajp3AwCAszunIvqpX4hrQkxMjC6//HK3scsuu0wfffSRJCk6OlqSlJmZqZiYGNcxmZmZrlXDy8Mq4agp9uJiWSwWSZLFYpHD4fByRADqm5rO3atXr1bPnj1155136l//+peaNm2qBx980HVb+NlasVFEBwDUdzWduwEAwNmd18Ki1a1z5876+eef3cZ++eUXNW/eXNLJmW3R0dFav369q2hus9m0detWJScn13S4gJusoiLtt1j0wrhxMplMyrPblZmeLntoqLdDA4BqU12t2Ox2u+x2u2ub9UwAAAAAADXFp4voEyZM0PXXX6/nn39ed911l7799lstXrxYixcvlnRycZPx48drxowZatmypauvamxsrAYMGODd4FHv5TqdCnQ4NCEwUK3CwrTl2DHNdDjkZDY6gDqsulqxsZ4JAAAAAMBb/L0dwJlcc801+vjjj/W3v/1NV1xxhZ577jnNmzdPQ4YMcR3z2GOPady4cRo9erSuueYa5ebmau3atSxMBp8RFxSkxOBgxfBvEkA94KkV28GDByW5t2I7VWZmpmtfeaZMmaLjx4+7Hunp6VUcOQAAAAAA5fPpmeiS1LdvX/Xt29fjfj8/P02fPl3Tp0+vwagAAEB5qqsVG+uZAAAAAAC8xeeL6AAAoPagFRsAAAAAoK6hiA4AAKpMaSu2KVOmaPr06UpISCi3FVteXp5Gjx6tnJwcdenShVZsAAAAAACfRREdAABUKVqxAQAAAADqEp9eWBQAAAAAAAAAAG9iJjoAAADwu6IiuywWiyTJYrHI4XB4OSIAAAAA3kYRHQAAAJB0Iidbaan79eRzz8tkMqkgP0+HMzJVXFzk7dAAAAAAeBFFdAAAAEBSYX6e/Bs2VNehyWraIlF7d23TRwvnyOl0ejs0AAAAAF5ET3QAAADgFBHRsYpunqCwJtHeDgUAAACAD6CIDgAAAAAAAACAB7RzAQAAAAAAAFAue1Gxa+F1SSoqKlJgYKBrOyQkRJGRkd4IDagxFNEBAAAAAAAAlJFlK9L+NItemDZOJpNJ9qJipR08rEtaNFVAwMmyoqlRhFLeXEEhHXUaRXQAAAAAAAAAZeQWOBXo79CEvoFqFR+mLXuOaeayAj3cu4FaxYcp3VqguZ9kyWazUURHnUYRHQAAAAAAAIBHcZFBSmwaLEtmgdv2SXbvBQbUEBYWBQAAAAAAAADAA4roAAAAAAAAAAB4QDsXAAAAADWmqMgui8VyynaRAgMDXdshISH0VAUAAIBPoYgOAAAAoEacyMlWWup+Pfnc8zKZTCoqsiv9wAE1vzhRAQEnv5o0Ngfp7cWLKKQDAADAZ1BEB86R1WqVzWaTxEwpX3Tq34/E3xEAAL6kMD9P/g0bquvQZDVtkai9u7bJsnCOugweraYtEpV15Fd9+W6KbDYb+RsAAAA+gyI6cA6sVquSBw+WPStLkmSKiFDKihV8yfMRp//9SPwdAQDgiyKiYxXdPEHWw+lu2wAAAIAvYmFR4BzYbDbZs7I0yWTSJJNJ9qwst1nP8K5T/37mhYXxdwQAAAAAAIDzxkx0oBLizeaTf7DbvRsIyhVvNisxOPjkBn9HAAAAAAAAOA/MRAcAAAAAAAAAwAOK6AAAAAAAAAAAeEARHQAAAAAAAAAAD+iJDgAAAAAAAJ9ktVpls9kkSRaLRQ6Hw8sRAaiPKKIDAAAAAADA51itViXfN1j23CxJUl6+XZkZ6bIXh3o5MgD1DUV0ALWavbhYFotFErMSAAAAAKAusdlssudmaVI/k+Ijzdqy55hmLnPI6eR7H4CaRREdQK2VVVSk/RaLXhg3TiaTSXl2uzLT02UPZVYCAAAAANQV8ZFmJTYNliWzwNuhAKinWFgUQK2V63Qq0OHQhMBAzQsL06jAQBkOh5zMRgcAAAAAAEAVoYgOoNaLCwpSYnCwYoKCvB0KAAAAAAAA6hiK6AAAAAAAAAAAeEARHQAAAAAAAAAADyiiAwAAAAAAAADgAUV0AAAAAAAAAAA8CPB2AAAAAABQqqjILovFIkkKCQlRZGSklyMCAABAfUcRHQAAAIBPOJGTrbTU/XryuedlMpnU2ByktxcvopAOAIAPsxcV8wM46jyK6AAAAAB8QmF+nvwbNlTXockKMpn05bspstlsfBkHAMBHZdmKtD/NohemjZPJZJKpUYRS3lxB7kadQ090AAAAAD4lIjpWETFx3g4DAACcRW6BU4H+Dk3oG6hJ/Uyy52bJZrN5OyygyjETHQAAAAAAAEClxUUG6YIgsyS7t0MBqgUz0QEAAAAAAAAA8IAiOnAaq9Wq1NRU18NqtXo7JAAAAACoES+88IL8/Pw0fvx411hhYaEeeughRUREqFGjRho4cKAyMzO9FyQAADWMdi7AKaxWq5IHD5Y9K8s1ZoqIUMoKFsUAAAAAULdt27ZNr7/+uq688kq38QkTJugf//iHPvjgA4WGhmrs2LG6/fbb9c0333gpUgAAahYz0YFT2Gw22bOyNMlk0rywME0ymWTPYlEMAAAAAHVbbm6uhgwZojfeeEMXXniha/z48eN666239PLLL+umm25Shw4dtGTJEv373//Wli1bvBgxAAA1hyI6UI54s1mJwcGKN5vPeJy9uFgWi0WpqamyWCxyOBw1FCEAAAAAVJ2HHnpIt9xyi5KSktzGd+zYoeLiYrfx1q1bq1mzZtq8eXNNhwkAgFfQzgWopKyiIu23WPTCuHEymUzKs9uVmZ4ue2iot0MDAAAAgAp77733tHPnTm3btq3MvoyMDAUGBiosLMxtPCoqShkZGR7PabfbZbfbXdvc3QsAqM1q1Ux0FjiBL8l1OhXocGhCYKDmhYVpVGCgDIdDTmaj+5RT7xZgkVgAqJ9OXTR8z549rj9zFxkASOnp6XrkkUe0fPlyBQUFVdl5Z82apdDQUNcjPj6+ys4NAEBNqzUz0VngBL4qLihIicHBshQUeDsUnOb0uwVYJBYA6h+r1aqRo8foREGhiorsSj9wQM0vTlRAQIAK8vN0OCNTxcVF3g4TALxmx44dOnr0qK6++mrXmNPp1KZNm/Tqq6/qs88+U1FRkXJyctxmo2dmZio6OtrjeadMmaKJEye6tm02G4V0AECtVStmorPACYDKOPVuARaJBbyDu8jgbTabTScKCtVtaLI69v2TSvwbqMvg0Rr42Ex1GjBEJSUlcjqd3g4TALymR48e+vHHH7Vr1y7Xo2PHjhoyZIjrzw0bNtT69etdz/n555918OBBXXfddR7PazKZFBIS4vYASp16l1h5dw2X7ueuMQC+olbMRD91gZMZM2a4xs+2wMkf/vCHcs9HbzagfokLCtIFZrN0yn/3AKofd5HBl0TExKnEME7+OTpW0c0TZD2c7uWoAMD7GjdurCuuuMJtLDg4WBEREa7xUaNGaeLEiQoPD1dISIjGjRun6667zuN3buBMrFarku8bLHtulmvM1ChCKW+evGv41P15+XZlZqTLXszaYwC8y+dnopcucDJr1qwy+yq7wAm92QAAqF7cRQYAQN3xyiuvqG/fvho4cKBuvPFGRUdHa+XKld4OC7WUzWaTPTdLk/qZNG9kmCb1M8me+7+7hk/dP6pHoAynQ04ns9EBeJdPF9Gra4GTKVOm6Pjx465HejqzkAAAqEqn3kV2qrPdReaJ3W6XzWZzewAAgOrx5Zdfat68ea7toKAgvfbaa8rOzlZeXp5Wrlx5xn7oQEXER5qV2DRY8ZFm2YuKZbFY3Fq4xEeaFRNedbUgADgfPt3OpboWODGZTDKZTNUZOgAA9VbpXWTbtm0rs+987iJ79tlnqzpUAAAAeFmWrUj70yx6Ydo4mUwmWrgA8Ek+PRO9uhY4AQAA1YO7yAAAAHAucgucCvR3aELfQM0bGUYLFwA+yadnorPACQAAtQt3kcEbrFarW4ufkJAQRUZGejEiAABwqlNzdWm7ltPFRQYpsWmwLJkFNR0eAJyVTxfRK+KVV16Rv7+/Bg4cKLvdrp49e2rhwoXeDguAD7IXn+yzV4oiC1D1Su8iO9WIESPUunVrPf7444qPj3fdRTZw4EBJ3EWG82O1WjVy9BidKCh0jTU2B+ntxYv4fzwAAD7AarUq+b7BsudmSRLtWgDUSrWuiP7ll1+6bZcucPLaa695JyAAtUJWUZH2Wyx6Ydw412xWU0SEUlasoMgCVCHuIkNNs9lsOlFQqG5DkxURE6esI7/qy3dTZLPZ+P87AAA+wGazyZ6bpUn9TIqPNGvLnmOauYx2LQBql1pXRAeAysh1OhXocGhCYKBahYUpvaBAc7OyKLIAXsBdZDhf5d0SHhETp+jmCV6ODAAAeBIfaaZdC4BaiyI6gHolLihIicHBJzfsdu8GA9QT3EWGqnR6+5aC/DwdzshUcXGRlyMDAAAAUFdRRAcAAECtcXr7lr27tumjhXPkdDq9HRoAAEC9Zy9iLTLUTRTRUe9VZJVwAADgW0rbt1gPp5fZV1Rkd315I7cDAADUjCxbkfanWfTCtFPWImsUoZQ3WYsMtR9FdNRrVqtVyYMHy571+yrhdrsy09NlD2WVcAAAaqMTOdlKS92vJ597XiaTiXYvAAAANSS3wKlAf4cm9A1Uq/gwpVsLNPcT1iJD3UARHfWazWaTPStLk0wmxZvN2nLsmGY6HHIyYw0AgFqpMD9P/g0bquvQZDVtkUi7FwAAgBoWFxmkxKa/r0Um1iJD3eDv7QAAXxBvNisxOFgxQUHeDgUAAFSBiOhYRTdPUFiTaG+HAgAAAKCWo4gOAAAAAAAAAIAHFNEBAAAAAAAAAPCAIjoAAAAAAAAAAB5QRAcAAAAAAAAAwAOK6AAAAAAAAAAAeEARHQAAAAAAAAAADyiiAwAAAAAAAADgQYC3AwB8nb24WBaLRZJksVjkcDi8HBGqi9Vqlc1mc22HhIQoMjLSixEBAAAAAADA2yiiA2eQVVSk/RaLXhg3TiaTSXl2uzLT02UPDfV2aKhiVqtVyYMHy56V5RozRUQoZcUKCukAAAAAAAD1GEV04AxynU4FOhyaEBioVmFh2nLsmGY6HHIyG73OsdlssmdlaZLJpHizWekFBZqblSWbzUYRHQAAH8VdZAAAAKgJFNGBCogLClJicLAsBQXeDgXVLN5sVmJw8MkNu927wQAAAI+sVqtGjh6jEwWFrrHG5iC9vXgRhXQAAHwUP4CjtqKIDgAAAKDWsdlsOlFQqG5DkxURE6esI7/qy3dTuIsMAAAfZbValXzfYNlzT2mj2ihCKW/SRhW+jyI6AAAAAJ9UVGR3LfAulT9bLSImTtHNE2o6NAAAcI5sNpvsuVma1M+k+Eiz0q0FmvsJbVRRO1BEBwAAAOBzTuRkKy11v5587nmZTCZJtGsBAKAuiI80K7Hp721URRtV1A4U0QEAAAD4nML8PPk3bKiuQ5PVtEUi7VoAAADgNRTRAQAAAPisiOhYV7uWU9u7WCwWORwOb4YGAACAeoIiOgAAAACfd3p7l4L8PB3OyFRxcZG3QwMAAB7Yi4r5ARx1AkV0AAAAAD7v9PYue3dt00cL58jpdHo7NAAAUI4sW5H2p1n0wrRxMplMysu3KzMjXfbiUG+HBpwzf28HAAAAAAAVVdreJaxJtLdDAQAAZ5Bb4FSgv0MT+gZq3sgwjeoRKMPpkNPJbHTUPsxER71jtVpls9kkcSsRAAAAAABAdYqLDFJi02BZMgu8HQpQaRTRUa9YrVYlDx4se1aWJCnPbldmerrsodxKBAAAAAAAAKAs2rmgXrHZbLJnZWmSyaR5YWEaFRgow+GQk9noAAAAAAAAAMpBER31UrzZrMTgYMUEBXk7FAAAAAAAAAA+jCI6AAAAAAAAAAAe0BMdQL1lLy6WxWKRVLFFZk9dlFaSQkJCFBkZWa0xAgAAAAAAwLsoogOol7KKirTfYtEL48bJZDKddZHZ0xellSRTRIRSVqygkA4AAAAAAFCHUUQHUC/lOp0KdDg0ITBQrcLCtOXYMc08wyKzpy5KG282K72gQHOzsmSz2SiiAwBQS516lxl3mAEAAMATiugA6rW4oCAlBgfLUlBQoeNLF6WVJNnt1RgZAACoTlarVSNHj9GJgkJJUmNzkN5evIhCOgAAXkQbVfgqiugAAADwKr4swRtsNptOFBSq29BkSdKX76ZwhxkAAF5ktVqVfN9g2XNPaaPaKEIpb9JGFd5HER0AAABec/psYIkZwahZETFx3g4BAADo9zaquVma1M+k+Eiz0q0FmvsJbVThGyiiAwAAwGtOnQ0cEROnrCO/MiMYAAAfd7a7yE7db7FY5PCw9hRQnvhIsxKb/t5GVbRRhW+giA4AAACvi4iJU3TzBG+HAQAAzuJsLTdO35+Xb1dmRrrsxaHeChkAzhtFdAAAAAAAAFTI2VpunL5/y55jmrnMIaeT2egAai+K6AAAAAAAADgnp7bcsBflymKxSPpf+5b4yDAlNg2WJbPAm2Gijjm1VRCL0aMmUUQHAAAAUCedrWcvAOD8ZdmKtD/NohemjZPJZKJ9C6rN6a2CTm0jBFQ3iuio81jQBAAAoP6xWq0aOXqMThQUusYam4P09uJFfNkGTjFr1iytXLlS//3vf2U2m3X99ddr9uzZuvTSS13HFBYWatKkSXrvvfdkt9vVs2dPLVy4UFFRUV6MHL4it8CpQH+HJvQNVKv4MNq3oNqc2ipIklsbIaC6UURHnWa1WpU8eLDsWb8vaGK3KzM9XfZQfhEHAACoy2w2m04UFKrb0GRFxMQp68iv+vLdFL5sA6f517/+pYceekjXXHONHA6H/vznP+vmm2/WTz/9pODgk606JkyYoH/84x/64IMPFBoaqrFjx+r222/XN9984+XoUZ3O9W6euMgg2regRsRHmn//k92rcaB+8ekiOr+I43zZbDbZs7I0yWRSvNmsLceOaabDISez0QEAAOqFiJg4RTdP8HYYgM9au3at2/bSpUvVpEkT7dixQzfeeKOOHz+ut956SytWrNBNN90kSVqyZIkuu+wybdmyRX/4wx+8ETaq2eltM6T/tc4AgPrI39sBnEnpL+JbtmzRunXrVFxcrJtvvll5eXmuYyZMmKBPPvlEH3zwgf71r3/p8OHDuv32270YNbzNarUqNTVVqamp/1vQxGxWYnCwYoKCvB0eAAAAAPis48ePS5LCw8MlSTt27FBxcbGSkpJcx7Ru3VrNmjXT5s2bvRIjqt+pbTPmjQzTpH4m2XOz3GamA0B94tMz0flFHOeK9i0A4F3cRQZPzuWW8KIiuywWyynbRQoMDJTE+iYAUJ1KSko0fvx4de7cWVdccYUkKSMjQ4GBgQoLC3M7NioqShkZGR7PZbfbZbf/r9UCxdfaKT7SrMSmwb9v0Trj/9u79+im6/uP46/ekoZbeyzFAq1QK0x2EScMpvtNqnPCHB6ZnOkZjoF2OjhQJuicOIVtHi5zMPAoFj0KisrEy5SjqDvMHfA2JhtjUweOa4mU1hgK6SX9pknz+wMakzRNmiZtLn0+zsk5fG+f76df8v28k0++n/cHQN+V1J3owaL9RZxO9L6H9C0AkFjkVUUo4SZ4DNZw6qSOHDqsX92/XGazWS6XIevRoxpxfpmys7PlbG5STW2dWltdvfknAECfMG/ePH300Ud69913Yy5rxYoV+s1vfhOHWgEAkHgp04nOL+KIRnv6lmonE5qg5xitrQFPSkaaaAfoCxhFhlDCTfAYrKW5SZk5OZo0c66GjyzTgb27Vf3IKv3fjNt8yy89skoejycBfwkApK/58+frtdde09tvv63i4mLf+qKiIrlcLp06dSrgu3ddXZ2Kioo6LW/x4sVatGiRb9nhcKikpKRH6g4AQE9LmU50fhEHkEzsLpcOV1drZWWlzGazJMlcUKCqzZvpSAf8xGsUGT+Ap4doJngsKBqmohGlstVYQy4DAOLD6/WqsrJSL7/8snbs2KHS0sB2ety4ccrJydFbb72l6dOnS5I++eQTHTt2TJdeemmn5ZrNZt/nZADoLsP1xcNrpPVDIqVEJzq/iANINo0ej0xutxaaTBqdny+r06nV9jMT7dCJDpwRz1Fk/AAOAEDPmDdvnjZv3qytW7dq4MCBvnicl5cni8WivLw8VVRUaNGiRTrnnHM0aNAgVVZW6tJLL2UEGYAeZXe4dPhItVYuOfPwWlOzobpaq4zWPJlzchJdPfQxSd2Jzi/iaBdpMrL27fwqid5WnJursrN5nmUw0Q7gL56jyPgBHACAnlFVVSVJKi8vD1i/ceNGzZ49W5K0Zs0aZWZmavr06QGTggNAT2p0emTKdGvhVJNGl+Rr1756LdvklsfjluhERy9L6k50fhGHdKaDfO6MGTLsdt86/7QZ/tubDEN1VquMvLwE1hgAEO9RZPwADgBAz/B6vRH3yc3N1bp167Ru3bpeqBEABCouzFXZ8P6qrmPeOyROZqIrEE5VVZVOnz6t8vJyDR061PfasmWLb581a9Zo6tSpmj59ui6//HIVFRXpT3/6UwJrjXhzOBwy7HbdYTZrbX6+7jCbZZxNmxG8vcJkktftloen0QEgIbxer+bPn6+XX35Zf/3rX8OOImvXlVFkAAAAAAAkSlI/ic4v4vBXYrGETZtRYrGorZfrBAAIxCgyAAAAAEC6SepOdAAAkFrIqwogmblchqqrqyWJuXQAAADQZXSiA0CcGK2tvi/mLpdLJpPJty14MlwgXTGKDECyajh1UkcOHdav7l8us9ksZ3OTamrr1NrqUk6OKXIBAAAA6LPoRAeAOLC7XDpcXa2VlZVSZqaO1NToguHDlZ19ppn1nwwXAAD0vpbmJmXm5GjSzLkaPrJMB/bu1kuPrJLH41FOTvTl2Ww23xw9Ej+YA0h/huuLh4YYyYN48X9fMUoMyYxOdACIg0aPRya3WwtNJp2UtMzp1IKsLI3Oz5fV6dTqs5Ph8uUaAIDEKigapqIRpbLVWLtdhs1m0y23zVGDs8W3bqAlVxseW0+sB5CW7A6XDh+p1sollXJ7pLpaq4zWvERXCynO/31lNpvV1Gzw3kLSohMdAOKoODdXZr9/h5sMFwAApCaHw6EGZ4vKZ85VwdBi2U98qh1PV/GDOYC01ej0yJTp1sKpJp1slJZtcsvj4YlhxMb/fTW6JF+79tXz3kLSohMdAAAAALqhYGixikaUJroaANBrigtzZWYaCcRZcWGuyob3V3WdM6rj/FPBSJFTq5GKDbGgEx0AAAAAAABAyghOBSNJ5gEFqno89FxkNptNc386Q0aj3bcu3P5AMDrRkZKMViaeAAAAAAAA6IuCU8FYbU6tfrXzucgcDoeMRrvuuNaskkJLxP2BYHSiI+XYXS4drq7WysqzE08YhuqsVhl5TDwBAECqcLkM3w/i/BgOAACA7mhPBXNG5LnISgotUe0PtKMTHSmn0eORye3WQpNJo/Pztau+Xsvcbnn4Ag4AQEpoOHVSRw4d1q/uX642j1s1tXVqbXUluloAAAAAEBKd6EhZxbm5KuvfX9XO6CaeAAAAidXS3KTMnBxNmjlXzadO6qVHVsnj8SS6Wujj/EdHSEw2BgAAgC/QiQ4AAICEKCgaJpPJlOhqAAGjI9onJxtoydWGx9bTkQ4AAAA60QGgM4mcwNZms8nhcPiWeRoOAICe4z86YvjIMtlPfKodT1cx2RgAAAAk0YkOACElcgJbm82muTNmyLDbfevMBQWq2ryZL/IAAIThn5KlOz+AFxQNU9GI0p6oGgAAAFIYnegAEEIiJ7B1OBwy7HbdYTarxGKR1enUarudp+EAAAgjOCWLs7mJSWsBAAAQF3SiA0AYiZzAtsRiUVn//mcWDKPXzw8AQCoJTslyYO9uJq0FAABAXGQmugIAAAAAEC/tKVnyhxQluioAAABIEzyJDgAAAAAAkOJsNpscDodvedCgQVGlg/Q/vjvzSgBAOqMTHQASINoPuEZrq2+itK7sDwAAAKDvsNlsmvvTGTIa7b515gEFqnp8c5e+NwQf39RsqK7WKqM1r8fqDACphE50AOhlNptNc2fMkGH3+4BbUKCqzaE/4NpdLh2urtbKykqZzeaI+wNAMuBpNgAAeo/D4ZDRaNcd15pVUmiR1ebU6lftcjgcXfrOEHz8rn31WrbJLY+H+A0AEp3oANDrHA6HDLtdd5jNKrFYZHU6tdre+QfcRo9HJrdbC00mjc7Pj7g/ACSazWbTLbfNUYOzRZLkbG5STW2dWltdCa4ZAADpraTQorLh/c8uGQHbujIatv346jpnT1cVSDqxpkRCeqMTHT3Gv/Gh4QE6KrFYVNb/zAdco7HRl66lsyc2i3NzffvLMDpsB4B4ivQlItx2h8OhBmeLymfOVcHQYh3Yu1svPbJKHo+n9/4AAADgE2u6FyDdcY8gEjrR0SOC01WQegLoXHC6libDUJ3VKiOP/IMAEiP4SXJJGmjJ1YbH1quwsDDi9nYFQ4tVNKJUthprr9YfAAAEijXdC5DuuEcQCZ3o6BH+6SokkXoCCCM4Xcuu+notc7vlIX8wgAQJfpLcfuJT7Xi6yhfLI20HAAC9o31kWFfnHwmX7gVIN5Hm6DFcrR1GhJcU5nOPICQ60dGjSiwWSYGpKiTSuwChtKdrqXaSfxBAYgR/EW9/krwzkbYD6STSF3GXy+DzLoBe5Z9+oqnZUF2tVUYro1kBqWN6luB7xO5w6fCRaq1ccnZEOPcQIqATHT0uOFWFRHoXAACSjX+KFiYCBQJFmiy34dRJHTl0WL+6f7nv826oFEcAEE/+6SeOf+7Vsk1ueTyMZgWkjulZdu2rD7hHGp0emTLdWjjVpNEl+R22A8HoREePC05VYXU6tby2Vh9++KFGjBghSXK5XDKZTL5jeHIHAIDe5Z+i5WTdCSYCBfxEmiy3pblJmTk5mjRzroaPLCPFEYBeVVJoUVtbomsBJKf2FEbVdaFHfBcX5obdDrSjEx29pj1VRfCT6UZrq47U1OiC4cOVnX3mLcmT6gAAJEbB0GK1eb0d1vunquhq3lUg3USaLLegaJgvxRHpXQAAANIHnejodSEnUXQ6tSAry/ekOhORAgCQPIJTVZDuBQiP9C4AkkGoSROBdMZ7Hj2JTnQkTPAkiu3LkiSDGZABAEgWwakqglNZAAhEehcAicakiehreM+jp9GJDgAAgC5pT1XRWSoLAIH807sAQG9i0kT0Nbzn0dMyE10BAAAAAAAAxF/7pIlDz8lNdFWAXsF7Hj2FJ9EBAAAAIEi8J9P1L49JRgEAAFILnegAAAAA4Cfek+kGl8ckowAAAKmFTnQAAAAA8BPvyXT9y8s1m5lkFECX2Ww2ORwO37LL5ZLJZJIU+ygZw9Ua1xE3QLrxv0f87z2JUWV9EZ3o6LYeDeatBHOkF97TAJJBcOyO54f/eKe+AJJBvCfTLSgaptxcS1zKApD+bDab5v50hoxGu6QzHXpHjtXogpHDlZ2draZmQ3W1VhmteVGXbXe4dPhItVYuqZTZbI6pLCAd+d8jysgMuPckyTygQFWPb6YjvQ+hEx3dYrPZNHfGDBn2s8G8tVVHamp0wfCzwdwwVGe1ysjrRjB3uXS4ulorK88G8xjKApIB72kAycBms+mW2+aowdniWxevlBLxTn0BAAAkh8Mho9GuO641q6TQol376rVsk1MLvpel0SX5Z5fd8nii/+G60emRKdOthVNNMZcFpCP/e+RkowLuPavNqdWv2hlV1sfQiY5ucTgcMux23WE2q8Ri0a76ei1zOrUgK0uj8/PPLLvd8nTjKbRGj0cmt1sLTaaYywKSAe9pAMnA4XCowdmi8plzVTC0WPYTn8YtpUS8U18AAIAvlBRaVDa8v6rrnJKk4sLcgOVYxLMsIB0VF+bKbPri32XD+5/dYoQ9ridHgCIx6ERHTEosFpX1769q59lgnpsbsByLeJYFJIN4vqf908ME52aLlKuNYA70bQVDi1U0olRS/FOwxDv1BZCu/O89iVgMAEA6CU7FJJH+JR3QiQ4AKcY/PYwyMwNSKQWnVpIkc0GBqjafCdbBqZiCtwPoO0jBAiRG8L0nxS+1EgAASLzgVEykf0kPdKKnOZ44BdKPf3qYk1LHVEp+y1anU8tra/Xhhx9qxIgRqq6uVlNdnX7Zv79KLBZZnU6tthPMgb6IFCxAYgTfe/FMrQQgMfjeDfQ9hqs14qiy9lRMZ/ZvZBRaiqMTPY3xxCmQ3opzc2X2+3eo1EqdTWo6ZOxYlfU/m8vNCJ/LDUDv6u0v4qRgARKj/d6TOqZ3iZSqLVLqNgC9h7QNQN9jd7h0+Ei1Vi6p9I0qC3ffR7s/khOd6GksePJPnjgF+h4mNQVSi81m0y23zVGDs8W3jjQPQHoLTu/ichmyHj2qEeeXKTs7O+KyRDsBJBJpG4C+p9HpkSnTrYVTTRpdkh/xvo92fyQnOtF7QLIN5Wqf/FNSVE+cJtvfAaD7wk1q6j9JqRT+XqddAHqWw+FQg7NF5TPnqmBocYc0D9yDQPoJlVqp+pFV+r8Zt3VpmXQwQHLwT9sgffG9m9gNpK/iwtyQ6Vqqq6vlDvHgmv/+/u1EMNqN5EQnepylSwqVdPk7AIQXnO5F6vxep10Aek/B0GJfmod2PKUOpLfg1EpdXQaQvEj1AvQNwelampoN1dVaZbTmRV0W7Ubyykx0BeJl3bp1GjlypHJzczVx4kR98MEHCamHfwqVtfn5usNslnE2hUoqSZe/A0B4/uleIt3rtAuIt2SJ3anC/yn16XctU/nMuWpwtnAPAgB6DbE7Ov6pXtbekq87rjXLaOTzM5Bu/NO1rL0lXxXfMcnrccvjiT6NKu1G8kqLJ9G3bNmiRYsWaf369Zo4caLWrl2ryZMn65NPPtGQIUMSUqdwKVSiGZYRad/g7f6TDIUaPuKftqErExL5/x1GY+ShKQBSU3u6FynwXpc6tg3xat9C8T8+UnsX7faexHC76CVb7A4XT0MtR/N/HKnsSGX5TzjodrtDPqXelXMRu4H0FW5i0khtTjxjd7TtG7E7tRC7u16W4WoNiN0lhfmdpnAgdgPpoz1dS3VdxzSqwfzbCSnE9+5OUkRJfO9OxLmlNOlE/8Mf/qBbb71VN998syRp/fr12rZtmzZs2KC77747wbULFE06hEj7Bm83Wlt1pKZGFwwfruzsbDUZhuqsVhl5Z4aP+KdtUGZmwL7h6hF8rNls7lA2gPQQLr1LJLGmewk+Plx7F+32nkSam+5JptgdnCYlnpP4RSo7Uln+Ew62edyqqa1Ta6urW+dyNjeFPR5Aago3MWlbmydsmxNrmij/46Nt3xKZoor0WN2TbLHbP92B4WrVkWM1umDkme+3wctS19MhRCo7Uln+aR3cHoVN6RDpXLGkhACQvILTv0hftCuRxJruJfh4/2MjlZ3IVDPJkOYm5TvRXS6X/vnPf2rx4sW+dZmZmbrqqqv0t7/9LYE1C80/HUKJxSKr06nV9tAz8kbaN3j7rvp6LXM6tSArS6Pz888su93ynP3l2j9tw0kpYN9w9Qg+NlTZANJD8L3u3zZEEk37Ful4SWHbu0jtYbTnjkUiz52qki12B0/mGc9J/CKVHaks/wkHm0+d1EuPrJLH4+n23xHueACpKdzEpM2nToZtcyJNZhyJ//En605E1b7Feu5YJPLcqSoZY3d7uoOSQot27avXsk1OLfhelkaX5HdYttqcWv1q1z6fRSo7Uln+aR1ONkrLNnWe0qFrf0f3UkIASF7+7URwuxJJcLsRTfsWfLykgGMjlR3ruWORyHO3S/lO9M8//1wej0fnnntuwPpzzz1X+/fvD3mMYRgy/FIQnD59WpLikl+ooaFBrR6P9jc0qMHt1nGnU82Gof/+979qaGiQ1WpVi2GoKStLDW63mtzugO3+Iu0bvL3Z45HH61WzxxOw/L+mJnlycnSoqcm3vVkK2Lezstv/Dv9jw5Udavnk2XN1Zd9YlzkX5+Jc8Sk7VNsgKaBdiKV9C8X/eElRlR3ruWMR6tytHo8aGhpijivtx3u93nhUNWkkY+x2u1tlNDfL2dQoV4tTbW0eGc7Qy0Zzs5zNzV16f1mtVhktLZ2WHVxW+/41h/4nZ1OjPjt2xLd/+7E1Rw7K6/GovrYm5LGR/o7249vLDrXsPF3f5X1jXeZcnItzxafsUG1WV9uc9nYjmvYtuI2Ltq2M9dyxCHVut7uV2B1GMsbuVrdHTS1uNTS71Wx45GnzqrnFE3K5qcWtZmfXPhv6Ptu1ZHWpLN93Z2uDGprdOnSiybd/syF52rz6n7VJnrYcHbc7Qx7b2bnal9uPby871PLJJnV531iXORfn4lzxKTtUuyIpoE2J1G5E074Ft3GSoio71nPHItS5W929/L3bm+KOHz/uleR9//33A9b/4he/8E6YMCHkMUuXLvVK4sWLFy9evFLiZbVaeyOk9hpiNy9evHjxSvcXsZvYzYsXL168UusVKXan/JPogwcPVlZWlurq6gLW19XVqaioKOQxixcv1qJFi3zLbW1tOnnypAoKCpSRkdGj9Q3mcDhUUlIiq9WqQYMG9eq50wXXMHZcw9hxDWPHNezI6/WqoaFBw4YNS3RV4irVY7fE+zUeuIax4xrGhusXO65hR8TuLyRL7OZ9GjuuYey4hrHjGsaG69e5rsbulO9EN5lMGjdunN566y1NmzZN0png/NZbb2n+/PkhjzGbzb7E/e3y8/N7uKbhDRo0iDdxjLiGseMaxo5rGDuuYaC8NJzAOV1it8T7NR64hrHjGsaG6xc7rmEgYvcZyRa7eZ/GjmsYO65h7LiGseH6hdaV2J3yneiStGjRIs2aNUvjx4/XhAkTtHbtWjU1NflmDQcAAMmF2A0AQGohdgMA+rK06ES/8cYbZbPZtGTJEtXW1uriiy/Wm2++2WHSEwAAkByI3QAApBZiNwCgL0uLTnRJmj9/fqfDyJKZ2WzW0qVLOwxzQ9dxDWPHNYwd1zB2XMO+J1Vjt8T7NR64hrHjGsaG6xc7rmHfk4qxm/dp7LiGseMaxo5rGBuuX+wyvF6vN9GVAAAAAAAAAAAgGWUmugIAAAAAAAAAACQrOtEBAAAAAAAAAOgEnegAAAAAAAAAAHSCTvQkZBiGLr74YmVkZGjv3r2Jrk7KOHr0qCoqKlRaWiqLxaKysjItXbpULpcr0VVLauvWrdPIkSOVm5uriRMn6oMPPkh0lVLKihUr9I1vfEMDBw7UkCFDNG3aNH3yySeJrlbKWrlypTIyMnT77bcnuipAtxDDo0f87h7id/cRu+OL2I1URcyOHjG7e4jZ3UfMjj/idvfRiZ6E7rrrLg0bNizR1Ug5+/fvV1tbmx599FF9/PHHWrNmjdavX6977rkn0VVLWlu2bNGiRYu0dOlS7dmzR2PHjtXkyZP12WefJbpqKWPnzp2aN2+edu3ape3bt6u1tVVXX321mpqaEl21lLN79249+uijuuiiixJdFaDbiOHRI35Hj/gdG2J3/BC7kcqI2dEjZkePmB0bYnZ8Ebdj5EVSef31170XXnih9+OPP/ZK8v7rX/9KdJVS2gMPPOAtLS1NdDWS1oQJE7zz5s3zLXs8Hu+wYcO8K1asSGCtUttnn33mleTduXNnoquSUhoaGryjRo3ybt++3Ttp0iTvz3/+80RXCYgaMTx+iN/hEb/ji9jdPcRupDJidvwQs8MjZscXMbv7iNux40n0JFJXV6dbb71VTz/9tPr165fo6qSF06dP65xzzkl0NZKSy+XSP//5T1111VW+dZmZmbrqqqv0t7/9LYE1S22nT5+WJN53UZo3b56+//3vB7wfgVRCDI8v4nfniN/xR+zuHmI3UhUxO76I2Z0jZscfMbv7iNuxy050BXCG1+vV7NmzNWfOHI0fP15Hjx5NdJVS3sGDB/XQQw9p1apVia5KUvr888/l8Xh07rnnBqw/99xztX///gTVKrW1tbXp9ttv17e+9S199atfTXR1UsZzzz2nPXv2aPfu3YmuCtAtxPD4In6HR/yOL2J39xC7kaqI2fFFzA6PmB1fxOzuI27HB0+i97C7775bGRkZYV/79+/XQw89pIaGBi1evDjRVU46Xb2G/o4fP64pU6bohz/8oW699dYE1Rx9zbx58/TRRx/pueeeS3RVUobVatXPf/5zPfvss8rNzU10dYAAxPDYEL+RCojd0SN2IxkRs2NDzEYqIGZ3D3E7fjK8Xq830ZVIZzabTXa7Pew+559/vm644Qa9+uqrysjI8K33eDzKysrSTTfdpKeeeqqnq5q0unoNTSaTJKmmpkbl5eX65je/qSeffFKZmfxWFIrL5VK/fv304osvatq0ab71s2bN0qlTp7R169bEVS4FzZ8/X1u3btXbb7+t0tLSRFcnZbzyyiv6wQ9+oKysLN86j8ejjIwMZWZmyjCMgG1AbyKGx4b43TOI3/FD7O4eYjeSETE7NsTsnkHMjh9idvcRt+OHTvQkcezYMTkcDt9yTU2NJk+erBdffFETJ05UcXFxAmuXOo4fP64rrrhC48aN0zPPPENDEMHEiRM1YcIEPfTQQ5LODI8677zzNH/+fN19990Jrl1q8Hq9qqys1Msvv6wdO3Zo1KhRia5SSmloaFB1dXXAuptvvlkXXnihfvnLXzJMDymBGB474nd0iN+xIXbHhtiNVEbMjh0xOzrE7NgQs2NH3I4fcqInifPOOy9gecCAAZKksrIyAnkXHT9+XOXl5RoxYoRWrVolm83m21ZUVJTAmiWvRYsWadasWRo/frwmTJigtWvXqqmpSTfffHOiq5Yy5s2bp82bN2vr1q0aOHCgamtrJUl5eXmyWCwJrl3yGzhwYIeg3b9/fxUUFBDMkTKI4bEhfkeP+B0bYndsiN1IZcTs2BCzo0fMjg0xO3bE7fihEx1pY/v27Tp48KAOHjzY4QMQAy5Cu/HGG2Wz2bRkyRLV1tbq4osv1ptvvtlh4hN0rqqqSpJUXl4esH7jxo2aPXt271cIAFIM8Tt6xO/YELsBoHuI2dEjZseGmI1kQjoXAAAAAAAAAAA6wewPAAAAAAAAAAB0gk50AAAAAAAAAAA6QSc6AAAAAAAAAACdoBMdAAAAAAAAAIBO0IkOAAAAAAAAAEAn6EQHAAAAAAAAAKATdKIDAAAAAAAAANAJOtEBAAAAAAAAAOgEnehAH3L06FFlZGRo7969ne6zY8cOZWRk6NSpU3E9d0ZGhl555ZW4lhmsvLxct99+e4+eAwCA3kTsBgAgtRC7gfREJzqQRGbPnq2MjAxlZGQoJydHpaWluuuuu9TS0hKX8ktKSnTixAl99atfjUt58XLttddqypQpIbe98847ysjI0H/+859erhUAAJERuzsidgMAkhmxuyNiNxAZnehAkpkyZYpOnDihw4cPa82aNXr00Ue1dOnSuJSdlZWloqIiZWdnx6W8eKmoqND27dv16aefdti2ceNGjR8/XhdddFECagYAQGTE7kDEbgBAsiN2ByJ2A5HRiQ4kGbPZrKKiIpWUlGjatGm66qqrtH37dt/2trY2rVixQqWlpbJYLBo7dqxefPFF3/b6+nrddNNNKiwslMVi0ahRo7Rx40ZJoYeVvf766xo9erQsFouuuOIKHT16NKA+v/71r3XxxRcHrFu7dq1GjhzpW969e7e++93vavDgwcrLy9OkSZO0Z8+eLv/NU6dOVWFhoZ588smA9Y2NjXrhhRdUUVEhu92uH/3oRxo+fLj69eunr33ta/rjH/8YttxQQ9ny8/MDzmO1WnXDDTcoPz9f55xzjq677roO1wAAgHCI3V8gdgMAUgGx+wvEbqBr6EQHkthHH32k999/XyaTybduxYoV2rRpk9avX6+PP/5YCxcu1I9//GPt3LlTknTffffpv//9r9544w3t27dPVVVVGjx4cMjyrVarrr/+el177bXau3evfvrTn+ruu++Oup4NDQ2aNWuW3n33Xe3atUujRo3SNddco4aGhi4dn52drZ/85Cd68skn5fV6fetfeOEFeTwe/ehHP1JLS4vGjRunbdu26aOPPtJtt92mmTNn6oMPPoi6vu1aW1s1efJkDRw4UO+8847ee+89DRgwQFOmTJHL5ep2uQCAvovYTewGAKQWYjexG+iK5BpbAkCvvfaaBgwYILfbLcMwlJmZqYcffliSZBiGli9frr/85S+69NJLJUnnn3++3n33XT366KOaNGmSjh07pq9//esaP368JAX8ch2sqqpKZWVlWr16tSTpS1/6kj788EP97ne/i6rOV155ZcDyY489pvz8fO3cuVNTp07tUhm33HKLfv/732vnzp0qLy+XdGZI2fTp05WXl6e8vDzdeeedvv0rKyv15z//Wc8//7wmTJgQVX3bbdmyRW1tbXr88ceVkZHhO2d+fr527Nihq6++ulvlAgD6FmI3sRsAkFqI3cRuIFp0ogNJ5oorrlBVVZWampq0Zs0aZWdna/r06ZKkgwcPqrm5Wd/97ncDjnG5XPr6178uSZo7d66mT5+uPXv26Oqrr9a0adN02WWXhTzXvn37NHHixIB17R8SolFXV6d7771XO3bs0GeffSaPx6Pm5mYdO3asy2VceOGFuuyyy7RhwwaVl5fr4MGDeuedd/Tb3/5WkuTxeLR8+XI9//zzOn78uFwulwzDUL9+/aKub7t///vfOnjwoAYOHBiwvqWlRYcOHep2uQCAvoXYTewGAKQWYjexG4gWnehAkunfv78uuOACSdKGDRs0duxYPfHEE6qoqFBjY6Mkadu2bRo+fHjAcWazWZL0ve99T9XV1Xr99de1fft2fec739G8efO0atWqbtUnMzMzYKiXdGY4lr9Zs2bJbrfrwQcf1IgRI2Q2m3XppZdGPTSroqJClZWVWrdunTZu3KiysjJNmjRJkvT73/9eDz74oNauXauvfe1r6t+/v26//faw58jIyAhb98bGRo0bN07PPvtsh2MLCwujqjsAoO8idhO7AQCphdhN7AaiRU50IIllZmbqnnvu0b333iun06kvf/nLMpvNOnbsmC644IKAV0lJie+4wsJCzZo1S88884zWrl2rxx57LGT5Y8aM6ZDbbNeuXQHLhYWFqq2tDQiK/hOkSNJ7772nBQsW6JprrtFXvvIVmc1mff7551H/vTfccIMyMzO1efNmbdq0SbfccotvuNd7772n6667Tj/+8Y81duxYnX/++frf//4XtrzCwkKdOHHCt3zgwAE1Nzf7li+55BIdOHBAQ4YM6XA98/Lyoq4/AADEbmI3ACC1ELuJ3UBX0IkOJLkf/vCHysrK0rp16zRw4EDdeeedWrhwoZ566ikdOnRIe/bs0UMPPaSnnnpKkrRkyRJt3bpVBw8e1Mcff6zXXntNY8aMCVn2nDlzdODAAf3iF7/QJ598os2bN3eYqbu8vFw2m00PPPCADh06pHXr1umNN94I2GfUqFF6+umntW/fPv3973/XTTfdJIvFEvXfOmDAAN14441avHixTpw4odmzZwecY/v27Xr//fe1b98+/exnP1NdXV3Y8q688ko9/PDD+te//qV//OMfmjNnjnJycnzbb7rpJg0ePFjXXXed3nnnHR05ckQ7duzQggUL9Omnn0ZdfwAAJGK3/zmI3QCAVEDs/uIcxG4gNDrRgSSXnZ2t+fPn64EHHlBTU5Puv/9+3XfffVqxYoXGjBmjKVOmaNu2bSotLZUkmUwmLV68WBdddJEuv/xyZWVl6bnnngtZ9nnnnaeXXnpJr7zyisaOHav169dr+fLlAfuMGTNGjzzyiNatW6exY8fqgw8+CJhoRJKeeOIJ1dfX65JLLtHMmTO1YMECDRkypFt/b0VFherr6zV58mQNGzbMt/7ee+/VJZdcosmTJ6u8vFxFRUWaNm1a2LJWr16tkpISffvb39aMGTN05513BuRy69evn95++22dd955uv766zVmzBhVVFSopaVFgwYN6lb9AQAgdp9B7AYApApi9xnEbqBzGd7gxEUAAAAAAAAAAEAST6IDAAAAAAAAANApOtEBAAAAAAAAAOgEnegAAAAAAAAAAHSCTnQAAAAAAAAAADpBJzoAAAAAAAAAAJ2gEx0AAAAAAAAAgE7QiQ4AAAAAAAAAQCfoRAcAAAAAAAAAoBN0ogMAAAAAAAAA0Ak60QEAAAAAAAAA6ASd6AAAAAAAAAAAdIJOdAAAAAAAAAAAOvH/rEklmCK3TugAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "## plot residual results\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "res_true = y - X.dot(beta_true)\n", + "res_ols = y - ols.predict(X)\n", + "res_RR = y - np.mean(y) - X.dot(RankReg.coef_)\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Create a figure with three subplots\n", + "fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5))\n", + "\n", + "# Histogram for true residuals\n", + "ax1.hist(res_true, bins=100, alpha=0.7, color='red', edgecolor='black')\n", + "ax1.set_title('True Residuals')\n", + "ax1.set_xlabel('Residual Value')\n", + "ax1.set_ylabel('Frequency')\n", + "\n", + "# Histogram for OLS residuals\n", + "ax2.hist(res_ols, bins=100, alpha=0.7, color='skyblue', edgecolor='black')\n", + "ax2.set_title('OLS Residuals')\n", + "ax2.set_xlabel('Residual Value')\n", + "ax2.set_ylabel('Frequency')\n", + "\n", + "# Histogram for RR residuals\n", + "ax3.hist(res_RR, bins=100, alpha=0.7, color='orange', edgecolor='black')\n", + "ax3.set_title('Rank Regression Residuals')\n", + "ax3.set_xlabel('Residual Value')\n", + "ax3.set_ylabel('Frequency')\n", + "\n", + "# Set layout and show plot\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, { "cell_type": "markdown", "metadata": { @@ -308,22 +364,13 @@ "provenance": [] }, "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", + "display_name": "Python 3", "name": "python3" }, "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } + "name": "python" + }, + "nbformat_minor": 0 }, "nbformat": 4, "nbformat_minor": 4