-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLimpiar_WGM.R
38 lines (30 loc) · 1.44 KB
/
Limpiar_WGM.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
library(magrittr)
#cargo WGM2018
base <- rio::import(here::here("wgm2018.xlsx"))
#Filtramos para Uruguay
wgm <- dplyr::filter(base, base$WP5 == "194")
#Nos quedamos con las variables de interés para el análisis y para ponderar
wgm <- dplyr::select(wgm, one_of(c("Q24", "Q25", "Q26", "Age",
"Gender", "Education")))
names(wgm) <- c("conf1", "conf2", "conf3", "edad", "genero", "educacion")
#Borramos las observaciones en las que no tengo respuesta a las variables de interés
wgm <- wgm %>%
dplyr::filter(!is.na(conf3))%>% #los elimino
dplyr::filter(!conf1 %in% c("99","98"))%>%
dplyr::filter(!conf2 %in% c("99","98"))%>%
dplyr::filter(!conf3 %in% c("99","98"))%>%
dplyr::filter(!edad<18)%>%
dplyr::filter(!is.na(educacion))
wgm$genero <- gsub("1", "0", wgm$genero) #Recodificamos la variable género para facilitar el análisis
wgm$genero <- gsub("2", "1", wgm$genero)
#Creamos variables dicotómicas
wgm$conf_general <- ifelse((wgm$conf1 == 1 | wgm$conf1 == 2) &
(wgm$conf2 == 1 | wgm$conf2 == 2) &
(wgm$conf3 == 1 | wgm$conf3 == 2), "1", "0")%>%
as.numeric()
wgm$conf1_dummy <- ifelse(wgm$conf1 <= 2, 1, 0)
wgm$conf2_dummy <- ifelse(wgm$conf2 <= 2, 1, 0)
wgm$conf3_dummy <- ifelse(wgm$conf3 <= 2, 1, 0)
wgm$conf3_polar <- ifelse(wgm$conf3 %in% c(1,5), 1, 0)
library(writexl)
write_xlsx(wgm, "wgm_uy.xlsx") #Exportamos la base reducida