-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalculate_averaged_result.py
91 lines (70 loc) · 2.12 KB
/
calculate_averaged_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import numpy as np
import pandas as pd
import constant
RANDOM_SEED = [12346, 12347, 12348]
ASR = constant.ASR
TTS = constant.TTS
DATASET = constant.DATASET
import sys, getopt
import utils
import constant
def printHelp() :
print('calculate_averaged_result.py -a <approach>')
print("or")
print('calculate_averaged_result.py --approach <approach>')
def main(argv):
approach = ""
try:
opts, args = getopt.getopt(argv,"ha:",["approach="])
except getopt.GetoptError:
printHelp()
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
printHelp()
sys.exit()
elif opt in ("-a", "--approach"):
approach = arg
if approach != "" :
calculateAveragedResult(approach)
else :
print("Please specify the output file location")
def calculateAveragedResult(approach) :
df = {}
avg = {}
for tts in TTS:
a = {}
avg[tts] = {}
for sr in ASR:
b = {}
avg[tts][sr] = {}
for random_seed in RANDOM_SEED:
fpath = "result/%s/%s-%d/%s/%s/statistic.csv" % (approach,
DATASET, random_seed, tts, sr)
b[random_seed] = pd.read_csv(fpath)
a[sr] = b
df[tts] = a
avg = {}
for tts in TTS:
t = {}
for sr in ASR:
s = {}
i = RANDOM_SEED[0]
first = i
temp = df[tts][sr][i]
for i in RANDOM_SEED:
if i != first:
temp = temp.add(df[tts][sr][i], fill_value=0)
t[sr] = temp/len(RANDOM_SEED)
t[sr] = t[sr].drop(columns=["stc", "utc"])
avg[tts] = t
for tts in TTS:
for sr in ASR:
folder = "result/%s/%s-averaged/%s/%s/" % (approach, DATASET,tts, sr)
if not os.path.exists(folder):
os.makedirs(folder)
fpath = folder + "statistic.csv"
avg[tts][sr].to_csv(fpath, index=False, float_format='%.2f')
if __name__ == "__main__":
main(sys.argv[1:])