forked from jayLEE0301/outpace_official
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoutpace_train.py
996 lines (781 loc) · 52.6 KB
/
outpace_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
import os
from random import random, uniform
os.environ['MUJOCO_GL'] = 'egl'
os.environ['EGL_DEVICE_ID'] = '0'
import copy
import pickle as pkl
import sys
import time
import numpy as np
from queue import Queue
import hydra
import torch
import utils
from logger import Logger
from replay_buffer import ReplayBuffer, HindsightExperienceReplayWrapperVer2
from video import VideoRecorder
import matplotlib.pyplot as plt
import seaborn as sns
from hgg.hgg import goal_distance
from visualize.visualize_2d import *
torch.backends.cudnn.benchmark = True
class UniformFeasibleGoalSampler:
def __init__(self, env_name):
self.env_name = env_name
if env_name in ['AntMazeSmall-v0', 'PointUMaze-v0']:
self.LOWER_CONTEXT_BOUNDS = np.array([-2, -2])
self.UPPER_CONTEXT_BOUNDS = np.array([10, 10])
elif env_name in ['sawyer_peg_pick_and_place']:
self.LOWER_CONTEXT_BOUNDS = np.array([-0.6, 0.2, 0.01478])
self.UPPER_CONTEXT_BOUNDS = np.array([0.6, 1.0, 0.4])
elif env_name in ['sawyer_peg_push']:
self.LOWER_CONTEXT_BOUNDS = np.array([-0.6, 0.2, 0.01478])
self.UPPER_CONTEXT_BOUNDS = np.array([0.6, 1.0, 0.02])
elif env_name == "PointSpiralMaze-v0":
self.LOWER_CONTEXT_BOUNDS = np.array([-10, -10])
self.UPPER_CONTEXT_BOUNDS = np.array([10, 10])
elif env_name in ["PointNMaze-v0"]:
self.LOWER_CONTEXT_BOUNDS = np.array([-2, -2])
self.UPPER_CONTEXT_BOUNDS = np.array([10, 18])
else:
raise NotImplementedError
def is_feasible(self, context):
# Check that the context is not in or beyond the outer wall
if self.env_name in ['AntMazeSmall-v0', 'PointUMaze-v0']: # 0.5 margin
if np.any(context < -1.5) or np.any(context > 9.5):
return False
elif np.all((np.logical_and(-2.5 < context[0], context[0] < 6.5), np.logical_and(1.5 < context[1], context[1] < 6.5))):
return False
else:
return True
elif self.env_name == "PointSpiralMaze-v0":
if np.any(context < -9.5) or np.any(context > 9.5):
return False
elif np.all((np.logical_and(-2.5 < context[0], context[0] < 6.5), np.logical_and(1.5 < context[1], context[1] < 6.5))):
return False
elif np.all((np.logical_and(-6.5 < context[0], context[0] < -1.5), np.logical_and(-6.5 < context[1], context[1] < 6.5))):
return False
elif np.all((np.logical_and(-2.5 < context[0], context[0] < 10.5), np.logical_and(-6.5 < context[1], context[1] < -1.5))):
return False
else:
return True
elif self.env_name in ["PointNMaze-v0"]:
if (context[0] < -1.5) or (context[0] > 9.5):
return False
elif (context[1] < -1.5) or (context[1] > 17.5):
return False
elif np.all((np.logical_and(-2.5 < context[0], context[0] < 6.5), np.logical_and(1.5 < context[1], context[1] < 6.5))):
return False
elif np.all((np.logical_and(1.5 < context[0], context[0] < 10.5), np.logical_and(9.5 < context[1], context[1] < 14.5))):
return False
else:
return True
elif self.env_name in ['sawyer_peg_pick_and_place']:
if not np.all(np.logical_and(self.LOWER_CONTEXT_BOUNDS < context, context <self.UPPER_CONTEXT_BOUNDS)):
return False
else:
return True
elif self.env_name in ['sawyer_peg_push']:
if not np.all(np.logical_and(self.LOWER_CONTEXT_BOUNDS < context, context <self.UPPER_CONTEXT_BOUNDS)):
return False
else:
return True
else:
raise NotImplementedError
def sample(self):
sample = np.random.uniform(self.LOWER_CONTEXT_BOUNDS, self.UPPER_CONTEXT_BOUNDS)
while not self.is_feasible(sample):
sample = np.random.uniform(self.LOWER_CONTEXT_BOUNDS, self.UPPER_CONTEXT_BOUNDS)
return sample
def get_object_states_only_from_goal(env_name, goal):
if env_name in ['sawyer_door', 'sawyer_peg']:
return goal[..., 4:7]
elif env_name == 'tabletop_manipulation':
raise NotImplementedError
else:
raise NotImplementedError
def get_original_final_goal(env_name):
if env_name in ['AntMazeSmall-v0', 'PointUMaze-v0']:
original_final_goal = np.array([0., 8.])
elif env_name in ['sawyer_peg_push']:
original_final_goal = np.array([-0.3, 0.4, 0.02])
elif env_name in ['sawyer_peg_pick_and_place']:
original_final_goal = np.array([-0.3, 0.4, 0.2])
elif env_name == "PointSpiralMaze-v0":
original_final_goal = np.array([8., -8.])
elif env_name in ["PointNMaze-v0"]:
original_final_goal = np.array([8., 16.])
else:
raise NotImplementedError
return original_final_goal.copy()
max_episode_timesteps_dict = {'AntMazeSmall-v0' : 300,
'PointUMaze-v0' : 100,
'sawyer_peg_pick_and_place' : 200,
'sawyer_peg_push' : 200,
'PointNMaze-v0' : 100,
'PointSpiralMaze-v0' : 200,
}
num_seed_steps_dict = { 'AntMazeSmall-v0' : 4000,
'PointUMaze-v0' : 2000,
'sawyer_peg_pick_and_place' : 2000,
'sawyer_peg_push' : 2000,
'PointNMaze-v0' : 2000,
'PointSpiralMaze-v0' : 2000,
}
num_random_steps_dict = {'AntMazeSmall-v0' : 4000,
'PointUMaze-v0' : 2000,
'sawyer_peg_pick_and_place' : 2000,
'sawyer_peg_push' : 2000,
'PointNMaze-v0' : 2000,
'PointSpiralMaze-v0' : 2000,
}
randomwalk_random_noise_dict = {'AntMazeSmall-v0' : 2.5,
'PointUMaze-v0' : 2.5,
'sawyer_peg_pick_and_place' : 0.1,
'sawyer_peg_push' : 0.1,
'PointNMaze-v0' : 2.5,
'PointSpiralMaze-v0' : 2.5,
}
aim_disc_replay_buffer_capacity_dict = {'AntMazeSmall-v0' : 50000,
'PointUMaze-v0' : 10000,
'sawyer_peg_pick_and_place' : 30000,
'sawyer_peg_push' : 30000,
'PointNMaze-v0' : 10000,
'PointSpiralMaze-v0' : 20000,
}
class Workspace(object):
def __init__(self, cfg):
self.work_dir = os.getcwd()
print(f'workspace: {self.work_dir}')
self.model_dir = utils.make_dir(self.work_dir, 'model')
self.buffer_dir = utils.make_dir(self.work_dir, 'buffer')
self.cfg = cfg
self.logger = Logger(self.work_dir,
save_tb=cfg.log_save_tb,
log_frequency=cfg.log_frequency_step,
action_repeat=cfg.action_repeat,
agent='outpace_rl')
utils.set_seed_everywhere(cfg.seed)
self.device = torch.device(cfg.device)
cfg.max_episode_timesteps = max_episode_timesteps_dict[cfg.env]
cfg.num_seed_steps = num_seed_steps_dict[cfg.env]
cfg.num_random_steps = num_random_steps_dict[cfg.env]
cfg.randomwalk_random_noise = randomwalk_random_noise_dict[cfg.env]
assert cfg.aim_disc_replay_buffer_capacity == aim_disc_replay_buffer_capacity_dict[cfg.env]
if cfg.env in ['sawyer_peg_push', 'sawyer_peg_pick_and_place']:
cfg.goal_env=False
from envs import sawyer_peg_pick_and_place, sawyer_peg_push
if cfg.env =='sawyer_peg_pick_and_place':
env = sawyer_peg_pick_and_place.SawyerPegPickAndPlaceV2(reward_type='sparse')
eval_env = sawyer_peg_pick_and_place.SawyerPegPickAndPlaceV2(reward_type='sparse')
elif cfg.env =='sawyer_peg_push':
env = sawyer_peg_push.SawyerPegPushV2(reward_type='sparse', close_gripper=False)
eval_env = sawyer_peg_push.SawyerPegPushV2(reward_type='sparse', close_gripper=False)
from gym.wrappers.time_limit import TimeLimit
env = TimeLimit(env, max_episode_steps=cfg.max_episode_timesteps)
eval_env = TimeLimit(eval_env, max_episode_steps=cfg.max_episode_timesteps)
if cfg.use_residual_randomwalk:
from env_utils import ResidualGoalWrapper
env = ResidualGoalWrapper(env, env_name = cfg.env)
eval_env = ResidualGoalWrapper(eval_env, env_name = cfg.env)
from env_utils import StateWrapper, DoneOnSuccessWrapper
if cfg.done_on_success:
relative_goal_env = False
residual_goal_env = True if cfg.use_residual_randomwalk else False
env = DoneOnSuccessWrapper(env, relative_goal_env = (relative_goal_env or residual_goal_env), reward_offset=0.0, earl_env = False)
eval_env = DoneOnSuccessWrapper(eval_env, relative_goal_env = (relative_goal_env or residual_goal_env), reward_offset=0.0, earl_env = False)
from env_utils import WraptoGoalEnv
self.env = StateWrapper(WraptoGoalEnv(env, env_name = cfg.env))
self.eval_env = StateWrapper(WraptoGoalEnv(eval_env, env_name = cfg.env))
obs_spec = self.env.observation_spec()
action_spec = self.env.action_spec()
elif cfg.goal_env: # e.g. Fetch, Ant
import gym
from env_utils import StateWrapper, HERGoalEnvWrapper, DoneOnSuccessWrapper, ResidualGoalWrapper
if cfg.env in ['AntMazeSmall-v0']:
from gym.wrappers.time_limit import TimeLimit
from envs.AntEnv.envs.antenv import EnvWithGoal
from envs.AntEnv.envs.antenv.create_maze_env import create_maze_env
self.env = TimeLimit(EnvWithGoal(create_maze_env(cfg.env, cfg.seed, env_path = cfg.env_path), cfg.env), max_episode_steps=cfg.max_episode_timesteps)
self.eval_env = TimeLimit(EnvWithGoal(create_maze_env(cfg.env, cfg.seed, env_path = cfg.env_path), cfg.env), max_episode_steps=cfg.max_episode_timesteps)
# self.eval_env.evaluate = True # set test goal = (0,16)
self.env.set_attribute(evaluate=False, distance_threshold=1.0, horizon=cfg.max_episode_timesteps, early_stop=False)
self.eval_env.set_attribute(evaluate=True, distance_threshold=1.0, horizon=cfg.max_episode_timesteps, early_stop=False)
if cfg.use_residual_randomwalk:
self.env = ResidualGoalWrapper(self.env, env_name = cfg.env)
self.eval_env = ResidualGoalWrapper(self.eval_env, env_name = cfg.env)
elif cfg.env in ["PointUMaze-v0", "PointSpiralMaze-v0", "PointNMaze-v0"]:
from gym.wrappers.time_limit import TimeLimit
import mujoco_maze
self.env = TimeLimit(gym.make(cfg.env), max_episode_steps=cfg.max_episode_timesteps)
self.eval_env = TimeLimit(gym.make(cfg.env), max_episode_steps=cfg.max_episode_timesteps)
if cfg.use_residual_randomwalk:
self.env = ResidualGoalWrapper(self.env, env_name = cfg.env)
self.eval_env = ResidualGoalWrapper(self.eval_env, env_name = cfg.env)
else:
self.env = gym.make(cfg.env)
self.eval_env = gym.make(cfg.env)
if cfg.done_on_success:
relative_goal_env = False
residual_goal_env = True if cfg.use_residual_randomwalk else False
self.env = DoneOnSuccessWrapper(self.env, relative_goal_env = (relative_goal_env or residual_goal_env))
self.eval_env = DoneOnSuccessWrapper(self.eval_env, relative_goal_env = (relative_goal_env or residual_goal_env))
# self.goal_env = self.env
self.env= StateWrapper(HERGoalEnvWrapper(self.env, env_name= cfg.env))
self.eval_env= StateWrapper(HERGoalEnvWrapper(self.eval_env, env_name= cfg.env))
obs_spec = self.env.observation_spec()
action_spec = self.env.action_spec()
cfg.agent.action_shape = action_spec.shape
cfg.agent.action_range = [
float(action_spec.low.min()),
float(action_spec.high.max())
]
self.max_episode_timesteps = cfg.max_episode_timesteps
if cfg.aim_discriminator_cfg.output_activation in [None, 'none', 'None']:
cfg.aim_discriminator_cfg.output_activation = None
if cfg.use_meta_nml:
if cfg.meta_nml.num_finetuning_layers in [None, 'none', 'None']:
cfg.meta_nml.num_finetuning_layers = None
if cfg.meta_nml_kwargs.meta_nml_custom_embedding_key in [None, 'none', 'None']:
cfg.meta_nml_kwargs.meta_nml_custom_embedding_key = None
cfg.meta_nml.equal_pos_neg_test= cfg.meta_nml_kwargs.equal_pos_neg_test and (not cfg.meta_nml_kwargs.meta_nml_negatives_only)
cfg.meta_nml.input_dim = self.env.goal_dim
if cfg.env in ['sawyer_door', 'sawyer_peg']:
if cfg.aim_kwargs.aim_input_type=='default':
cfg.aim_discriminator_cfg.x_dim = (get_object_states_only_from_goal(self.cfg.env, np.ones(self.env.goal_dim)).shape[-1])*2
cfg.critic.feature_dim = self.env.obs_dim + self.env.goal_dim # [obs(ag), dg]
cfg.actor.feature_dim = self.env.obs_dim + self.env.goal_dim # [obs(ag), dg]
elif cfg.env in ['sawyer_peg_push', 'sawyer_peg_pick_and_place']:
if cfg.aim_kwargs.aim_input_type=='default':
cfg.aim_discriminator_cfg.x_dim = self.env.goal_dim*2
cfg.critic.feature_dim = self.env.obs_dim + self.env.goal_dim # [obs(ag), dg]
cfg.actor.feature_dim = self.env.obs_dim + self.env.goal_dim # [obs(ag), dg]
else:
if cfg.aim_kwargs.aim_input_type=='default':
cfg.aim_discriminator_cfg.x_dim = self.env.goal_dim*2
cfg.critic.feature_dim = self.env.obs_dim + self.env.goal_dim*2 # [obs, ag, dg]
cfg.actor.feature_dim = self.env.obs_dim + self.env.goal_dim*2 # [obs, ag, dg]
cfg.agent.goal_dim = self.env.goal_dim
cfg.agent.obs_shape = obs_spec.shape
# exploration agent uses intrinsic reward
self.expl_agent = hydra.utils.instantiate(cfg.agent)
self.expl_buffer = ReplayBuffer(obs_spec.shape, action_spec.shape,
cfg.replay_buffer_capacity,
self.device)
self.aim_expl_buffer = ReplayBuffer(obs_spec.shape, action_spec.shape,
cfg.aim_disc_replay_buffer_capacity,
self.device)
n_sampled_goal = 4
self.randomwalk_buffer = None
if cfg.use_residual_randomwalk:
self.randomwalk_buffer = ReplayBuffer(obs_spec.shape, action_spec.shape,
cfg.randomwalk_buffer_capacity,
self.device)
self.randomwalk_buffer = HindsightExperienceReplayWrapperVer2(self.randomwalk_buffer,
n_sampled_goal=n_sampled_goal,
wrapped_env=self.env,
env_name = cfg.env,
consider_done_true = cfg.done_on_success,
)
self.goal_buffer = None
self.expl_buffer = HindsightExperienceReplayWrapperVer2(self.expl_buffer,
n_sampled_goal=n_sampled_goal,
wrapped_env=self.env,
env_name = cfg.env,
consider_done_true = cfg.done_on_success,
)
self.aim_expl_buffer = HindsightExperienceReplayWrapperVer2(self.aim_expl_buffer,
n_sampled_goal=cfg.aim_n_sampled_goal, #n_sampled_goal,
# goal_selection_strategy=KEY_TO_GOAL_STRATEGY['future'],
wrapped_env=self.env,
env_name = cfg.env,
consider_done_true = cfg.done_on_success,
)
if cfg.use_hgg:
from hgg.hgg import TrajectoryPool, MatchSampler
self.hgg_achieved_trajectory_pool = TrajectoryPool(**cfg.hgg_kwargs.trajectory_pool_kwargs)
self.hgg_sampler = MatchSampler(goal_env=self.eval_env,
goal_eval_env = self.eval_env,
env_name=cfg.env,
achieved_trajectory_pool = self.hgg_achieved_trajectory_pool,
agent = self.expl_agent,
**cfg.hgg_kwargs.match_sampler_kwargs
)
self.eval_video_recorder = VideoRecorder(self.work_dir if cfg.save_video else None, dmc_env=False, env_name=cfg.env)
self.train_video_recorder = VideoRecorder(self.work_dir if cfg.save_video else None, dmc_env=False, env_name=cfg.env)
self.train_video_recorder.init(enabled=False)
self.step = 0
self.uniform_goal_sampler = UniformFeasibleGoalSampler(env_name=cfg.env)
def get_agent(self):
return self.expl_agent
def get_buffer(self):
return self.expl_buffer
def evaluate(self, eval_uniform_goal=False):
uniform_goal=False
repeat = 2 if eval_uniform_goal else 1
for r in range(repeat):
uniform_goal = True if r==1 else False
avg_episode_reward = 0
avg_episode_success_rate = 0
eval_subgoal_list = []
for episode in range(self.cfg.num_eval_episodes):
observes = []
if uniform_goal:
sampled_goal = self.uniform_goal_sampler.sample()
obs = self.eval_env.reset(goal = sampled_goal)
else:
obs = self.eval_env.reset()
final_goal = self.eval_env.goal.copy()
observes.append(obs)
self.eval_video_recorder.init(enabled=False)
episode_reward = 0
episode_step = 0
done = False
while not done:
agent = self.get_agent()
with utils.eval_mode(agent):
action = agent.act(obs, spec = self.eval_env.action_spec(), sample=False)
next_obs, reward, done, info = self.eval_env.step(action)
self.eval_video_recorder.record(self.eval_env)
episode_reward += reward
episode_step += 1
obs = next_obs
if self.cfg.use_residual_randomwalk:
if ((episode_step) % self.max_episode_timesteps == 0) or info.get('is_current_goal_success'):
done = True
observes.append(obs)
if self.eval_env.is_successful(obs):
avg_episode_success_rate+=1.0
if self.cfg.use_aim and episode==0:
fig = plt.figure(figsize=(15,15))
sns.set_style("darkgrid")
observes = np.stack(observes, axis =0)
obs_dict = self.eval_env.convert_obs_to_dict(observes)
tiled_initial_obs = np.tile(obs_dict['achieved_goal'][0][None, :], (observes.shape[0], 1)) #[ts, dim]
obs_desired_goal = obs_dict['desired_goal']
if self.cfg.env in ['sawyer_door', 'sawyer_peg']:
if self.cfg.aim_kwargs.aim_input_type=='default':
observes = torch.from_numpy(np.concatenate([get_object_states_only_from_goal(self.cfg.env, obs_dict['achieved_goal']), get_object_states_only_from_goal(self.cfg.env, obs_desired_goal)], axis =-1)).float().to(self.device) #[ts, dim]
observes_reverse = torch.from_numpy(np.concatenate([get_object_states_only_from_goal(self.cfg.env, obs_dict['achieved_goal']), get_object_states_only_from_goal(self.cfg.env, tiled_initial_obs)], axis =-1)).float().to(self.device) #[ts, dim]
else:
if self.cfg.aim_kwargs.aim_input_type=='default':
observes = torch.from_numpy(np.concatenate([obs_dict['achieved_goal'], obs_desired_goal], axis =-1)).float().to(self.device) #[ts, dim]
observes_reverse = torch.from_numpy(np.concatenate([obs_dict['achieved_goal'], tiled_initial_obs], axis =-1)).float().to(self.device) #[ts, dim]
aim_reward = self.expl_agent.compute_aim_reward(observes).detach().cpu().numpy()
if self.cfg.normalize_f_obs:
aim_disc_outputs = self.expl_agent.aim_discriminator.forward(self.expl_agent.normalize_obs(observes, self.cfg.env)).detach().cpu().numpy()
else:
aim_disc_outputs = self.expl_agent.aim_discriminator.forward(observes).detach().cpu().numpy()
aim_reward_reverse = self.expl_agent.compute_aim_reward(observes_reverse).detach().cpu().numpy()
if self.cfg.normalize_f_obs:
aim_disc_outputs_reverse = self.expl_agent.aim_discriminator.forward(self.expl_agent.normalize_obs(observes_reverse, self.cfg.env)).detach().cpu().numpy()
else:
aim_disc_outputs_reverse = self.expl_agent.aim_discriminator.forward(observes_reverse).detach().cpu().numpy()
timesteps = np.arange(observes.shape[0])
ax1 = fig.add_subplot(4,1,1)
ax1.plot(timesteps, aim_reward, label = 'aim_reward')
ax1.legend(loc ='upper right') # , prop={'size': 20}
ax2 = fig.add_subplot(4,1,2)
ax2.plot(timesteps, aim_disc_outputs, label = 'aim_disc_output')
ax2.legend(loc ='upper right')
ax3 = fig.add_subplot(4,1,3)
ax3.plot(timesteps, aim_reward_reverse, label = 'aim_reward_reverse')
ax3.legend(loc ='upper right') # , prop={'size': 20}
ax4 = fig.add_subplot(4,1,4)
ax4.plot(timesteps, aim_disc_outputs_reverse, label = 'aim_disc_output_reverse')
ax4.legend(loc ='upper right')
if uniform_goal:
plt.savefig(self.eval_video_recorder.save_dir+'/aim_outputs_uniform_goal_'+str(self.step)+'.jpg')
else:
plt.savefig(self.eval_video_recorder.save_dir+'/aim_outputs_'+str(self.step)+'.jpg')
plt.close()
avg_episode_reward += episode_reward
if uniform_goal:
self.eval_video_recorder.save(f'uniform_goal_{self.step}.mp4')
else:
self.eval_video_recorder.save(f'{self.step}.mp4')
avg_episode_reward /= self.cfg.num_eval_episodes
avg_episode_success_rate = avg_episode_success_rate/self.cfg.num_eval_episodes
if uniform_goal:
self.eval_env.reset(goal = get_original_final_goal(self.cfg.env))
self.logger.log('eval/episode_reward_uniform_goal', avg_episode_reward, self.step)
self.logger.log('eval/episode_success_rate_uniform_goal', avg_episode_success_rate, self.step)
else:
self.logger.log('eval/episode_reward', avg_episode_reward, self.step)
self.logger.log('eval/episode_success_rate', avg_episode_success_rate, self.step)
self.logger.dump(self.step, ty='eval')
def get_inv_weight_curriculum_buffer(self):
if self.cfg.inv_weight_curriculum_kwargs.curriculum_buffer=='aim':
return self.aim_expl_buffer
elif self.cfg.inv_weight_curriculum_kwargs.curriculum_buffer=='default':
return self.expl_buffer
def run(self):
self._run()
def _run(self):
episode, episode_reward, episode_step = 0, 0, 0
inv_curriculum_pocket = []
start_time = time.time()
if self.cfg.use_hgg:
recent_sampled_goals = Queue(self.cfg.hgg_kwargs.match_sampler_kwargs.num_episodes)
previous_goals = None
done = True
info = {}
if self.cfg.use_meta_nml:
if self.cfg.env in ['AntMazeSmall-v0', "PointUMaze-v0"]:
final_goal_states = np.tile(np.array([0., 8.]), (self.cfg.aim_num_precollect_init_state,1))
final_goal_states += np.random.normal(loc=np.zeros_like(final_goal_states), scale=0.5*np.ones_like(final_goal_states))
elif self.cfg.env == "PointSpiralMaze-v0":
final_goal_states = np.tile(np.array([8., -8.]), (self.cfg.aim_num_precollect_init_state,1))
final_goal_states += np.random.normal(loc=np.zeros_like(final_goal_states), scale=0.5*np.ones_like(final_goal_states))
elif self.cfg.env in ["PointNMaze-v0"]:
final_goal_states = np.tile(np.array([8., 16.]), (self.cfg.aim_num_precollect_init_state,1))
final_goal_states += np.random.normal(loc=np.zeros_like(final_goal_states), scale=0.5*np.ones_like(final_goal_states))
elif self.cfg.env in [ 'sawyer_peg_push' ]:
final_goal_states = np.tile(np.array([-0.3, 0.4, 0.02]), (self.cfg.aim_num_precollect_init_state,1))
noise = np.random.normal(loc=np.zeros_like(final_goal_states), scale=0.05*np.ones_like(final_goal_states))
noise[2] = 0
final_goal_states += noise
elif self.cfg.env in ['sawyer_peg_pick_and_place']:
final_goal_states = np.tile(np.array([-0.3, 0.4, 0.2]), (self.cfg.aim_num_precollect_init_state,1))
final_goal_states += np.random.normal(loc=np.zeros_like(final_goal_states), scale=0.05*np.ones_like(final_goal_states))
else:
raise NotImplementedError
agent = self.get_agent()
agent.final_goal_states = final_goal_states.copy()
if self.cfg.use_hgg:
temp_obs = self.eval_env.reset()
recent_sampled_goals.put(self.eval_env.convert_obs_to_dict(temp_obs)['achieved_goal'].copy())
current_pocket_success = 0
current_pocket_trial = 0
while self.step <= self.cfg.num_train_steps:
if done:
if self.step > 0:
current_pocket_trial += 1
if info['is_success']:
current_pocket_success += 1
# hgg update
if self.cfg.use_hgg :
if episode % self.cfg.hgg_kwargs.hgg_sampler_update_frequency ==0 :
initial_goals = []
desired_goals = []
# collect s_0, g from T*
for i in range(self.cfg.hgg_kwargs.match_sampler_kwargs.num_episodes):
temp_obs = self.eval_env.convert_obs_to_dict(self.eval_env.reset())
goal_a = temp_obs['achieved_goal'].copy()
if 'meta_nml' in hgg_sampler.cost_type or 'aim_f' in hgg_sampler.cost_type:
# In this case, desired_goal is not used inside
# for preventing initial sampled hgg goals to be final goal
if self.cfg.env in ['AntMazeSmall-v0', 'PointUMaze-v0', 'PointNMaze-v0', 'PointSpiralMaze-v0']:
noise_scale = 0.5
noise = np.random.normal(loc=np.zeros_like(goal_a), scale=noise_scale*np.ones_like(goal_a))
elif self.cfg.env in ['sawyer_peg_push','sawyer_peg_pick_and_place']:
noise_scale = 0.05
noise = np.random.normal(loc=np.zeros_like(goal_a), scale=noise_scale*np.ones_like(goal_a))
noise[2] = 0 # zero out z element to prevent sampling through the table
else:
raise NotImplementedError
goal_d = goal_a + noise # These will be meaningless after achieved_goals are accumulated in hgg_achieved_trajectory_pool
else:
raise NotImplementedError
initial_goals.append(goal_a.copy())
desired_goals.append(goal_d.copy())
hgg_start_time = time.time()
hgg_sampler = self.hgg_sampler
hgg_sampler.update(initial_goals, desired_goals, replay_buffer = self.expl_buffer, meta_nml_epoch=episode)
# print('hgg sampler update step : {} time : {}'.format(self.step, time.time() - hgg_start_time))
self.train_video_recorder.save(f'train_episode_{episode-1}.mp4')
if self.step > 0:
fps = episode_step / (time.time() - start_time)
self.logger.log('train/fps', fps, self.step)
start_time = time.time()
self.logger.log('train/episode_reward', episode_reward, self.step)
self.logger.log('train/episode', episode, self.step)
if self.cfg.use_hgg:
hgg_sampler = self.hgg_sampler
n_iter = 0
while True:
# print('hgg sampler pool len : {} step : {}'.format(len(hgg_sampler.pool), self.step))
sampled_goal = hgg_sampler.sample(np.random.randint(len(hgg_sampler.pool))).copy()
obs = self.env.reset(goal = sampled_goal)
if not self.env.is_successful(obs):
break
n_iter +=1
if n_iter==10:
break
if recent_sampled_goals.full():
recent_sampled_goals.get()
recent_sampled_goals.put(sampled_goal)
# obs = self.env.reset(goal = sampled_goal)
assert (sampled_goal == self.env.goal.copy()).all()
else:
agent = self.get_agent()
obs = self.env.reset()
final_goal = self.env.goal.copy()
self.logger.log('train/episode_finalgoal_dist', np.linalg.norm(final_goal), self.step)
if self.cfg.use_hgg:
original_final_goal = get_original_final_goal(self.cfg.env)
self.logger.log('train/episode_dist_from_curr_g_to_example_g', np.linalg.norm(final_goal-original_final_goal), self.step)
sampled_goals_for_log = np.array(recent_sampled_goals.queue)
self.logger.log('train/average_dist_from_curr_g_to_example_g', np.linalg.norm(original_final_goal[None, :]-sampled_goals_for_log, axis =-1).mean(), self.step)
self.train_video_recorder.init(enabled=False)
hgg_save_freq = 3 if 'Point' in self.cfg.env else 25
if self.cfg.use_hgg and episode % hgg_save_freq == 0 :
sampled_goals_for_vis = np.array(recent_sampled_goals.queue)
fig = plt.figure()
sns.set_style("darkgrid")
ax1 = fig.add_subplot(1,1,1)
ax1.scatter(sampled_goals_for_vis[:, 0], sampled_goals_for_vis[:, 1])
if self.cfg.env in ['AntMazeSmall-v0', "PointUMaze-v0"]:
plt.xlim(-2,10)
plt.ylim(-2,10)
elif self.cfg.env == "PointSpiralMaze-v0":
plt.xlim(-10,10)
plt.ylim(-10,10)
elif self.cfg.env in ["PointNMaze-v0"]:
plt.xlim(-2,10)
plt.ylim(-2,18)
elif self.cfg.env in [ 'sawyer_peg_push','sawyer_peg_pick_and_place']:
plt.xlim(-0.6,0.6)
plt.ylim(0.2,1.0)
else:
raise NotImplementedError
plt.savefig(self.train_video_recorder.save_dir+'/train_hgg_goals_episode_'+str(episode)+'.jpg')
plt.close()
with open(self.train_video_recorder.save_dir+'/train_hgg_goals_episode_'+str(episode)+'.pkl', 'wb') as f:
pkl.dump(sampled_goals_for_vis, f)
if episode % self.cfg.train_episode_video_freq == 0 or episode in [25,50,75,100]:
self.train_video_recorder.init(enabled=False)
# Visualize from init state to subgoals
visualize_num_iter = 0
scatter_states = self.env.convert_obs_to_dict(obs.copy())['achieved_goal'][None, :]
for k in range(visualize_num_iter+1):
init_state = scatter_states[k]
if self.cfg.use_aim:
visualize_discriminator(normalizer = agent.normalize_obs if self.cfg.normalize_f_obs else None,
discriminator = agent.aim_discriminator,
initial_state = init_state,
scatter_states = scatter_states.squeeze(),
env_name = self.cfg.env,
aim_input_type = self.cfg.aim_kwargs.aim_input_type,
device = self.device,
savedir_w_name = self.train_video_recorder.save_dir + '/aim_f_visualize_train_episode_'+str(episode)+'_s'+str(k),
)
visualize_discriminator2(normalizer = agent.normalize_obs if self.cfg.normalize_f_obs else None,
discriminator = agent.aim_discriminator,
env_name = self.cfg.env,
aim_input_type = self.cfg.aim_kwargs.aim_input_type,
device = self.device,
savedir_w_name = self.train_video_recorder.save_dir + '/aim_f_visualize_train_goalfix_'+str(episode)+'_s'+str(k),
)
if self.cfg.use_meta_nml:
visualize_meta_nml(agent=agent,
meta_nml_epoch=episode,
scatter_states = scatter_states.squeeze(),
replay_buffer= self.get_buffer(),
goal_env = self.env,
env_name = self.cfg.env,
aim_input_type = self.cfg.aim_kwargs.aim_input_type,
savedir_w_name = self.train_video_recorder.save_dir + '/aim_meta_nml_prob_visualize_train_episode_'+str(episode)+'_s'+str(k),
)
episode_reward = 0
episode_step = 0
episode += 1
episode_observes = [obs]
self.logger.log('train/episode', episode, self.step)
agent = self.get_agent()
replay_buffer = self.get_buffer()
# evaluate agent periodically
if self.step % self.cfg.eval_frequency == 0:
print('eval started...')
self.logger.log('eval/episode', episode - 1, self.step)
self.evaluate(eval_uniform_goal=False)
if self.step > self.cfg.num_random_steps:
temp_obs, _, _, _, _, _ = self.aim_expl_buffer.sample_without_relabeling(128, agent.discount, sample_only_state = False)
temp_obs = temp_obs.detach().cpu().numpy()
temp_obs_dict = self.env.convert_obs_to_dict(temp_obs)
temp_dg = temp_obs_dict['desired_goal']
fig = plt.figure()
sns.set_style("darkgrid")
ax1 = fig.add_subplot(1,1,1)
ax1.scatter(temp_dg[:, 0], temp_dg[:, 1], label = 'goals')
if self.cfg.env in ['AntMazeSmall-v0', "PointUMaze-v0"]:
x_min, x_max = -2, 10
y_min, y_max = -2, 10
elif self.cfg.env == "PointSpiralMaze-v0":
x_min, x_max = -10, 10
y_min, y_max = -10, 10
elif self.cfg.env in ["PointNMaze-v0"]:
x_min, x_max = -2, 10
y_min, y_max = -2, 18
elif self.cfg.env in [ 'sawyer_peg_push','sawyer_peg_pick_and_place']:
x_min, x_max = -0.6, 0.6
y_min, y_max = 0.2, 1.0
else:
raise NotImplementedError
plt.xlim(x_min,x_max)
plt.ylim(y_min,y_max)
ax1.legend(loc ="best") # 'upper right' # , prop={'size': 20}
plt.savefig(self.eval_video_recorder.save_dir+'/curriculum_goals_'+str(self.step)+'.jpg')
plt.close()
if self.cfg.use_residual_randomwalk and (self.randomwalk_buffer.idx > 128 or self.randomwalk_buffer.full):
temp_obs, _, _, _, _, _ = self.randomwalk_buffer.sample_without_relabeling(128, agent.discount, sample_only_state = False)
temp_obs = temp_obs.detach().cpu().numpy()
temp_obs_dict = self.env.convert_obs_to_dict(temp_obs)
temp_dg = temp_obs_dict['desired_goal']
temp_ag = temp_obs_dict['achieved_goal']
fig = plt.figure()
sns.set_style("darkgrid")
ax1 = fig.add_subplot(1,1,1)
ax1.scatter(temp_dg[:, 0], temp_dg[:, 1], label = 'goals')
ax1.scatter(temp_ag[:, 0], temp_ag[:, 1], label = 'achieved states', color = 'red')
if self.cfg.env in ['AntMazeSmall-v0', "PointUMaze-v0"]:
x_min, x_max = -2, 10
y_min, y_max = -2, 10
elif self.cfg.env == "PointSpiralMaze-v0":
x_min, x_max = -10, 10
y_min, y_max = -10, 10
elif self.cfg.env in ["PointNMaze-v0"]:
x_min, x_max = -2, 10
y_min, y_max = -2, 18
elif self.cfg.env in [ 'sawyer_peg_push','sawyer_peg_pick_and_place']:
x_min, x_max = -0.6, 0.6
y_min, y_max = 0.2, 1.0
else:
raise NotImplementedError
plt.xlim(x_min,x_max)
plt.ylim(y_min,y_max)
ax1.legend(loc ="best") # 'upper right' # , prop={'size': 20}
plt.savefig(self.eval_video_recorder.save_dir+'/randomwalk_goalandstates_'+str(self.step)+'.jpg')
plt.close()
# save agent periodically
if self.cfg.save_model and self.step % self.cfg.save_frequency == 0:
utils.save(
self.expl_agent,
os.path.join(self.model_dir, f'expl_agent_{self.step}.pt'))
if self.cfg.save_buffer and (self.step % self.cfg.buffer_save_frequency == 0) :
utils.save(self.expl_buffer.replay_buffer, os.path.join(self.buffer_dir, f'buffer_{self.step}.pt'))
utils.save(self.aim_expl_buffer.replay_buffer, os.path.join(self.buffer_dir, f'aim_disc_buffer_{self.step}.pt'))
if self.cfg.use_residual_randomwalk:
utils.save(self.randomwalk_buffer.replay_buffer, os.path.join(self.buffer_dir, f'randomwalk_buffer_{self.step}.pt'))
if self.cfg.use_hgg:
utils.save(self.hgg_achieved_trajectory_pool, os.path.join(self.buffer_dir, f'hgg_achieved_trajectory_pool_{self.step}.pt'))
# sample action for data collection
if self.step < self.cfg.num_random_steps or (self.cfg.randomwalk_method == 'rand_action' and self.env.is_residual_goal):
spec = self.env.action_spec()
action = np.random.uniform(spec.low, spec.high,
spec.shape)
else:
with utils.eval_mode(agent):
action = agent.act(obs, spec = self.env.action_spec(), sample=True)
logging_dict = agent.update(replay_buffer, self.randomwalk_buffer, self.aim_expl_buffer, self.step, self.env, self.goal_buffer)
if self.step % self.cfg.logging_frequency== 0:
if logging_dict is not None: # when step = 0
for key, val in logging_dict.items():
self.logger.log('train/'+key, val, self.step)
next_obs, reward, done, info = self.env.step(action)
episode_reward += reward
episode_observes.append(next_obs)
last_timestep = True if (episode_step+1) % self.max_episode_timesteps == 0 or done else False
self.train_video_recorder.record(self.env)
if self.cfg.use_residual_randomwalk:
if self.env.is_residual_goal:
self.randomwalk_buffer.add(obs, action, reward, next_obs, info.get('is_current_goal_success'), last_timestep)
else:
replay_buffer.add(obs, action, reward, next_obs, info.get('is_current_goal_success'), last_timestep)
self.aim_expl_buffer.add(obs, action, reward, next_obs, info.get('is_current_goal_success'), last_timestep)
else:
replay_buffer.add(obs, action, reward, next_obs, done, last_timestep)
self.aim_expl_buffer.add(obs, action, reward, next_obs, done, last_timestep)
if last_timestep:
replay_buffer.add_trajectory(episode_observes)
replay_buffer.store_episode()
self.aim_expl_buffer.store_episode()
if self.randomwalk_buffer is not None:
self.randomwalk_buffer.store_episode()
if self.randomwalk_buffer is not None:
if (not replay_buffer.full) and (not self.randomwalk_buffer.full):
assert self.step+1 == self.randomwalk_buffer.idx + replay_buffer.idx
else:
if not replay_buffer.full:
assert self.step+1 == replay_buffer.idx
if self.cfg.use_hgg:
temp_episode_observes = copy.deepcopy(episode_observes)
temp_episode_ag = []
# NOTE : should it be [obs, ag] ?
if 'aim_f' in self.hgg_sampler.cost_type or 'meta_nml' in self.hgg_sampler.cost_type:
temp_episode_init = self.eval_env.convert_obs_to_dict(temp_episode_observes[0])['achieved_goal'] # for bias computing
else:
raise NotImplementedError
for k in range(len(temp_episode_observes)):
temp_episode_ag.append(self.eval_env.convert_obs_to_dict(temp_episode_observes[k])['achieved_goal'])
if getattr(self.env, 'full_state_goal', False):
raise NotImplementedError("You should modify the code when full_state_goal (should address achieved_goal to compute goal distance below)")
achieved_trajectories = [np.array(temp_episode_ag)] # list of [ts, dim]
achieved_init_states = [temp_episode_init] # list of [ts(1), dim]
selection_trajectory_idx = {}
for i in range(len(achieved_trajectories)):
# full state achieved_goal
if self.cfg.env in ['AntMazeSmall-v0', "PointUMaze-v0", "PointSpiralMaze-v0", "PointNMaze-v0"]:
threshold = 0.2
elif self.cfg.env in [ 'sawyer_peg_push','sawyer_peg_pick_and_place']:
threshold = 0.02
else:
raise NotImplementedError
if goal_distance(achieved_trajectories[i][0], achieved_trajectories[i][-1])>threshold: # if there is a difference btw first and last timestep ?
selection_trajectory_idx[i] = True
hgg_achieved_trajectory_pool = self.hgg_achieved_trajectory_pool
for idx in selection_trajectory_idx.keys():
hgg_achieved_trajectory_pool.insert(achieved_trajectories[idx].copy(), achieved_init_states[idx].copy())
obs = next_obs
episode_step += 1
self.step += 1
if self.cfg.use_residual_randomwalk:
if self.env.is_residual_goal:
if (self.env.residual_goalstep % 10 == 0) or info.get('is_current_goal_success'):
if (self.cfg.use_uncertainty_for_randomwalk not in [None, 'none', 'None']) and self.step > self.get_agent().meta_test_sample_size:
residual_goal = self.get_agent().sample_randomwalk_goals(obs = obs, ag = self.env.convert_obs_to_dict(obs)['achieved_goal'], \
episode = episode, env=self.env, replay_buffer = self.get_inv_weight_curriculum_buffer(), \
num_candidate = self.cfg.randomwalk_num_candidate, random_noise = self.cfg.randomwalk_random_noise, \
uncertainty_mode = self.cfg.use_uncertainty_for_randomwalk)
else:
noise = np.random.uniform(low=-self.cfg.randomwalk_random_noise, high=self.cfg.randomwalk_random_noise, size=self.env.goal_dim)
if self.cfg.env in [ 'sawyer_peg_pick_and_place']:
assert self.cfg.randomwalk_random_noise <= 0.2
pass
elif self.cfg.env in [ 'sawyer_peg_push']:
assert self.cfg.randomwalk_random_noise <= 0.2
noise[2] = 0
residual_goal = self.env.convert_obs_to_dict(obs)['achieved_goal'] + noise
self.env.reset_goal(residual_goal)
obs[-self.env.goal_dim:] = residual_goal.copy()
else:
if info.get('is_current_goal_success'): #succeed original goal
self.env.original_goal_success = True
if (self.cfg.use_uncertainty_for_randomwalk not in [None, 'none', 'None']) and self.step > self.get_agent().meta_test_sample_size:
residual_goal = self.get_agent().sample_randomwalk_goals(obs = obs, ag = self.env.convert_obs_to_dict(obs)['achieved_goal'], \
episode = episode, env=self.env, replay_buffer = self.get_inv_weight_curriculum_buffer(), \
num_candidate = self.cfg.randomwalk_num_candidate, random_noise = self.cfg.randomwalk_random_noise, \
uncertainty_mode = self.cfg.use_uncertainty_for_randomwalk)
else:
noise = np.random.uniform(low=-self.cfg.randomwalk_random_noise, high=self.cfg.randomwalk_random_noise, size=self.env.goal_dim)
if self.cfg.env in [ 'sawyer_peg_pick_and_place']:
assert self.cfg.randomwalk_random_noise <= 0.2
pass
elif self.cfg.env in [ 'sawyer_peg_push']:
assert self.cfg.randomwalk_random_noise <= 0.2
noise[2] = 0
residual_goal = self.env.convert_obs_to_dict(obs)['achieved_goal'] + noise
self.env.reset_goal(residual_goal)
obs[-self.env.goal_dim:] = residual_goal.copy()
if (episode_step) % self.max_episode_timesteps == 0: #done only horizon ends
done = True
info['is_success'] = self.env.original_goal_success
@hydra.main(config_path='./config', config_name='config_outpace.yaml')
def main(cfg):
import os
os.environ['HYDRA_FULL_ERROR'] = str(1)
from outpace_train import Workspace as W
workspace = W(cfg)
workspace.run()
if __name__ == '__main__':
main()