From a18537c25435134fd9899d518fa9d104566dcd43 Mon Sep 17 00:00:00 2001 From: Sunil Patel Date: Sat, 11 Jun 2022 18:40:02 +0530 Subject: [PATCH] new RST test --- docs/source/camera_API.rst | 1101 ++++++++++++++++++++++++++++-------- 1 file changed, 856 insertions(+), 245 deletions(-) diff --git a/docs/source/camera_API.rst b/docs/source/camera_API.rst index 2114fd5..1fa4d19 100755 --- a/docs/source/camera_API.rst +++ b/docs/source/camera_API.rst @@ -1,343 +1,954 @@ -Aircontrol Camera API -===================== - -Camera Placement ----------------- - -AirControl Airplane has two cameras. One is in the Cockpit and another -is a follow camera. Both the camera can be used for capturing -screenshots while in flight. - -Python API ----------- - -Python API has a ``set_camera`` function to set the camera properties. -``set_camera`` function takes the following arguments: - -InputControlType (str, optional): It can be either ``Code`` or -``Other``. This is to control the internal mechanism and prevent -repeated calling in already set variables. - If ``InputControlType`` is -set to ‘Code’, the camera cannot be controlled from Keyboard or -Joystick. If ``InputControlType`` is set to ‘Other’, the camera can be -only controlled from Keyboard or Joystick. Defaults to “Code”. - -ActiveCamera (int, optional): Aircontrol Airplane has two cameras inside -the Cockpit and outside the Airplane. The Camera inside the Cockpit is -indexed as 0. The outside of the Airplane is indexed as 1. -``ActiveCamera`` can be used to select the scene camera. Defaults to 1. -- IsCapture (bool, optional): ``Iscapture`` if true the screenshot will -be captured. Defaults to False. - CaptureCamera (int, optional): -``CaptureCamera`` defines which camera should be used for capturing the -scene. Defaults to 1. - CaptureType (int, optional): Choose between -different capture types. Defaults to 1. - CaptureWidth (int, optional): -Width of the captured image. Defaults to 256. - CaptureHeight (int, -optional): Height of the captured image. Defaults to 256. - IsOutput -(bool, optional): By default ``set_camera`` function only sets the -internal state. ``set_camera`` only provides log output and not the -actual captured image. ``set_control`` when called it returns the actual -output. IF you want to force ``set_camera`` to return the image, set -``IsOutput`` to True. Defaults to False. - -**Capture Types** - -One of the main challenges in Machine Learning is the task of getting -large amounts of training data in the right format. Deep learning, and -machine learning more generally, needs huge training sets to work -properly. Virtual worlds can provide a wealth of training data. However, -it must consist of more than just the final image: object -categorization, optical flow, etc - -``Capture Types`` can be set to the following: - -+-----+---------+------------------------------------------------------+ -| Cap | Type | Details | -| tur | | | -| e | | | -| Typ | | | -| e | | | -+=====+=========+======================================================+ -| 0 | Scene | Capture from scene Camera | -| | Capture | | -+-----+---------+------------------------------------------------------+ -| 1 | Instanc | Each object in the scene gets unique color | -| | e | | -| | Segment | | -| | ation | | -+-----+---------+------------------------------------------------------+ -| 2 | Semanti | Objects are assigned color based on their category | -| | c | | -| | segment | | -| | ation | | -+-----+---------+------------------------------------------------------+ -| 3 | Depth | Pixels are colored according to their motion in the | -| | | relation to the camera | -+-----+---------+------------------------------------------------------+ -| 4 | Normals | Surfaces are colored according to their orientation | -| | | in relation to the camera | -+-----+---------+------------------------------------------------------+ -| 5 | Optical | Pixels are colored according to their distance from | -| | Flow | the camera (Only visible when Airplane or Object in | -| | | reference are moving) | -+-----+---------+------------------------------------------------------+ - -Implementation details ----------------------- - -First of all ``AC_Airplane_CameraController.OnSceneChange()`` calls -ColorEncoding class to encode unique object idenitifier and layer as RGB -color. These colors are stored in MaterialPropertyBlock for each object -and are automatically passed into the shaders when rendering. - -Upon start ``AC_Airplane_CameraController`` component creates hidden -camera for every single pass of output data (image segmentation, optical -flow, depth, etc). These cameras allow to override usual rendering of -the scene and instead use custom shaders to generate the output. These -cameras are attached to different scene camera using -``Camera.targetDisplay property`` - handy for preview in the Editor. - -For Image segmentation and Object categorization pass special -replacement shader is set with \`Camera.SetReplacementShader(). It -overrides shaders that would be otherwise used for rendering and instead -outputs encoded object id or layer. +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + + .. rubric:: Aircontrol Camera + API\ `¶ <#Aircontrol-Camera-API>`__ + :name: Aircontrol-Camera-API + +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + + .. rubric:: Camera Placement\ `¶ <#Camera-Placement>`__ + :name: Camera-Placement + + AirControl Airplane has two cameras. One is in the Cockpit + and another is a follow camera. Both the camera can be used + for capturing screenshots while in flight. + + .. rubric:: Python API\ `¶ <#Python-API>`__ + :name: Python-API + + Python API has a ``set_camera`` function to set the camera + properties. ``set_camera`` function takes the following + arguments: + + - InputControlType (str, optional): It can be either + ``Code`` or ``Other``. This is to control the internal + mechanism and prevent repeated calling in already set + variables. + - If ``InputControlType`` is set to 'Code', the camera + cannot be controlled from Keyboard or Joystick. If + ``InputControlType`` is set to 'Other', the camera can be + only controlled from Keyboard or Joystick. Defaults to + "Code". + - ActiveCamera (int, optional): Aircontrol Airplane has two + cameras inside the Cockpit and outside the Airplane. The + Camera inside the Cockpit is indexed as 0. The outside of + the Airplane is indexed as 1. ``ActiveCamera`` can be + used to select the scene camera. Defaults to 1. + - IsCapture (bool, optional): ``Iscapture`` if true the + screenshot will be captured. Defaults to False. + - CaptureCamera (int, optional): ``CaptureCamera`` defines + which camera should be used for capturing the scene. + Defaults to 1. + - CaptureType (int, optional): Choose between different + capture types. Defaults to 1. + - CaptureWidth (int, optional): Width of the captured + image. Defaults to 256. + - CaptureHeight (int, optional): Height of the captured + image. Defaults to 256. + - IsOutput (bool, optional): By default ``set_camera`` + function only sets the internal state. ``set_camera`` + only provides log output and not the actual captured + image. ``set_control`` when called it returns the actual + output. IF you want to force ``set_camera`` to return the + image, set ``IsOutput`` to True. Defaults to False. -Optical flow and Depth pass cameras request additional data to be -rendered with ``DepthTextureMode.Depth`` and -``DepthTextureMode.MotionVectors`` flags. Rendering of these cameras is -followed by drawing full screen quad ``CommandBuffer.Blit()`` with -custom shaders that convert 24/16bit-per-channel data into the 8-bit RGB -encoding. + **Capture Types** -Importing Requirements ----------------------- + One of the main challenges in Machine Learning is the task + of getting large amounts of training data in the right + format. Deep learning, and machine learning more generally, + needs huge training sets to work properly. Virtual worlds + can provide a wealth of training data. However, it must + consist of more than just the final image: object + categorization, optical flow, etc -.. code:: ipython3 + ``Capture Types`` can be set to the following: - from AirControl import actions - from pprint import pprint - import PIL.Image as Image - import base64 - import numpy as np - from io import BytesIO - from matplotlib.pyplot import imshow - import matplotlib.pyplot as plt - - A = actions.Actions() + ============ ===================== + ============================================================================================================================= + Capture Type Type Details + ============ ===================== + ============================================================================================================================= + 0 Scene Capture Capture from scene Camera + 1 Instance Segmentation Each object in the scene gets unique color + 2 Semantic segmentation Objects are assigned color based on their category + 3 Depth Pixels are colored according to their motion in the relation to the camera + 4 Normals Surfaces are colored according to their orientation in relation to the camera + 5 Optical Flow Pixels are colored according to their distance from the camera (Only visible when Airplane or Object in reference are moving) + ============ ===================== + ============================================================================================================================= +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell -.. parsed-literal:: + .. container:: jp-Cell-inputWrapper - Now play the environment and call call method `Action.get_connected` to get connected + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + .. container:: jp-InputArea jp-Cell-inputArea -.. code:: ipython3 + .. container:: jp-InputPrompt jp-InputArea-prompt - # get connected to server - A.get_connected() + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput -Examples (Cockpit Camera) -------------------------- + .. rubric:: Implementation + details\ `¶ <#Implementation-details>`__ + :name: Implementation-details -**Scene Capture** + First of all + ``AC_Airplane_CameraController.OnSceneChange()`` calls + ColorEncoding class to encode unique object idenitifier and + layer as RGB color. These colors are stored in + MaterialPropertyBlock for each object and are automatically + passed into the shaders when rendering. -.. code:: ipython3 + Upon start ``AC_Airplane_CameraController`` component + creates hidden camera for every single pass of output data + (image segmentation, optical flow, depth, etc). These + cameras allow to override usual rendering of the scene and + instead use custom shaders to generate the output. These + cameras are attached to different scene camera using + ``Camera.targetDisplay property`` - handy for preview in the + Editor. - output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=0,CaptureType=0,CaptureHeight=256,CaptureWidth=256,IsOutput=True) - image = output['ScreenCapture'] - if image != "": - im = Image.open(BytesIO(base64.b64decode(image))) - imshow(np.asarray(im)) - plt.axis('off') + For Image segmentation and Object categorization pass + special replacement shader is set with + \`Camera.SetReplacementShader(). It overrides shaders that + would be otherwise used for rendering and instead outputs + encoded object id or layer. + Optical flow and Depth pass cameras request additional data + to be rendered with ``DepthTextureMode.Depth`` and + ``DepthTextureMode.MotionVectors`` flags. Rendering of these + cameras is followed by drawing full screen quad + ``CommandBuffer.Blit()`` with custom shaders that convert + 24/16bit-per-channel data into the 8-bit RGB encoding. +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell -.. image:: ../images/camera_API_files/camera_API_8_0.png + .. container:: jp-Cell-inputWrapper + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser -**Instance Segmentation** + .. container:: jp-InputArea jp-Cell-inputArea -.. code:: ipython3 + .. container:: jp-InputPrompt jp-InputArea-prompt - output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=0,CaptureType=1,CaptureHeight=256,CaptureWidth=256,IsOutput=True) - image = output['ScreenCapture'] - if image != "": - im = Image.open(BytesIO(base64.b64decode(image))) - imshow(np.asarray(im)) - plt.axis('off') + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + .. rubric:: Importing + Requirements\ `¶ <#Importing-Requirements>`__ + :name: Importing-Requirements +.. container:: jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs -.. image:: ../images/camera_API_files/camera_API_10_0.png + .. container:: jp-Cell-inputWrapper + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser -**Semantic segmentation** + .. container:: jp-InputArea jp-Cell-inputArea -.. code:: ipython3 + .. container:: jp-InputPrompt jp-InputArea-prompt - output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=0,CaptureType=2,CaptureHeight=256,CaptureWidth=256,IsOutput=True) - image = output['ScreenCapture'] - if image != "": - im = Image.open(BytesIO(base64.b64decode(image))) - imshow(np.asarray(im)) - plt.axis('off') + In [1]: + .. container:: + jp-CodeMirrorEditor jp-Editor jp-InputArea-editor + .. container:: CodeMirror cm-s-jupyter -.. image:: ../images/camera_API_files/camera_API_12_0.png + .. container:: highlight hl-ipython3 + :: -**Depth** + import sys + sys.path.append("../../") + from pprint import pprint + import PIL.Image as Image + import base64 + import numpy as np + from io import BytesIO + from matplotlib.pyplot import imshow + import matplotlib.pyplot as plt -.. code:: ipython3 +.. container:: jp-Cell jp-CodeCell jp-Notebook-cell - output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=0,CaptureType=3,CaptureHeight=256,CaptureWidth=256,IsOutput=True) - image = output['ScreenCapture'] - if image != "": - im = Image.open(BytesIO(base64.b64decode(image))) - imshow(np.asarray(im)) - plt.axis('off') + .. container:: jp-Cell-inputWrapper + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + .. container:: jp-InputArea jp-Cell-inputArea -.. image:: ../images/camera_API_files/camera_API_14_0.png + .. container:: jp-InputPrompt jp-InputArea-prompt + In [2]: -**Normals** + .. container:: + jp-CodeMirrorEditor jp-Editor jp-InputArea-editor -.. code:: ipython3 + .. container:: CodeMirror cm-s-jupyter - output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=0,CaptureType=4,CaptureHeight=256,CaptureWidth=256,IsOutput=True) - image = output['ScreenCapture'] - if image != "": - im = Image.open(BytesIO(base64.b64decode(image))) - imshow(np.asarray(im)) - plt.axis('off') + .. container:: highlight hl-ipython3 + :: + from Python.src.airctrl import environment + from Python.src.airctrl import sample_generator + from Python.src.airctrl.utils import unity + A = environment.Trigger() + L = unity.Launch() + port = 7858 + process = L.launch_executable("/home/supatel/Games/AirControl_2021/Build/1.3.0/Linux/v1.3.0-AirControl.x86_64", server_port=port) -.. image:: ../images/camera_API_files/camera_API_16_0.png + .. container:: jp-Cell-outputWrapper + .. container:: + jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser -**Optical Flow** + .. container:: jp-OutputArea jp-Cell-outputArea -.. code:: ipython3 + .. container:: jp-OutputArea-child - output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=0,CaptureType=5,CaptureHeight=256,CaptureWidth=256,IsOutput=True) - image = output['ScreenCapture'] - if image != "": - im = Image.open(BytesIO(base64.b64decode(image))) - imshow(np.asarray(im)) - plt.axis('off') + .. container:: jp-OutputPrompt jp-OutputArea-prompt + .. container:: jp-RenderedText jp-OutputArea-output + :: -.. image:: ../images/camera_API_files/camera_API_18_0.png + Now call method `.get_connected(port=)` to get connected + Loading environment from /home/supatel/Games/AirControl_2021/Build/1.3.0/Linux/v1.3.0-AirControl.x86_64 at port 7858 client ip 127.0.1.1 client port 7858 -Example (External Camera) -------------------------- + Sleeping for 5 seconds to allow environment load -**Scene Capture** + [UnityMemory] Configuration Parameters - Can be set up in boot.config + "memorysetup-bucket-allocator-granularity=16" + "memorysetup-bucket-allocator-bucket-count=8" + "memorysetup-bucket-allocator-block-size=4194304" + "memorysetup-bucket-allocator-block-count=1" + "memorysetup-main-allocator-block-size=16777216" + "memorysetup-thread-allocator-block-size=16777216" + "memorysetup-gfx-main-allocator-block-size=16777216" + "memorysetup-gfx-thread-allocator-block-size=16777216" + "memorysetup-cache-allocator-block-size=4194304" + "memorysetup-typetree-allocator-block-size=2097152" + "memorysetup-profiler-bucket-allocator-granularity=16" + "memorysetup-profiler-bucket-allocator-bucket-count=8" + "memorysetup-profiler-bucket-allocator-block-size=4194304" + "memorysetup-profiler-bucket-allocator-block-count=1" + "memorysetup-profiler-allocator-block-size=16777216" + "memorysetup-profiler-editor-allocator-block-size=1048576" + "memorysetup-temp-allocator-size-main=4194304" + "memorysetup-job-temp-allocator-block-size=2097152" + "memorysetup-job-temp-allocator-block-size-background=1048576" + "memorysetup-job-temp-allocator-reduction-small-platforms=262144" + "memorysetup-temp-allocator-size-background-worker=32768" + "memorysetup-temp-allocator-size-job-worker=262144" + "memorysetup-temp-allocator-size-preload-manager=262144" + "memorysetup-temp-allocator-size-nav-mesh-worker=65536" + "memorysetup-temp-allocator-size-audio-worker=65536" + "memorysetup-temp-allocator-size-cloud-worker=32768" + "memorysetup-temp-allocator-size-gfx=262144" -.. code:: ipython3 +.. container:: jp-Cell jp-CodeCell jp-Notebook-cell - output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=1,CaptureType=0,CaptureHeight=256,CaptureWidth=256,IsOutput=True) - image = output['ScreenCapture'] - if image != "": - im = Image.open(BytesIO(base64.b64decode(image))) - imshow(np.asarray(im)) - plt.axis('off') + .. container:: jp-Cell-inputWrapper + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + .. container:: jp-InputArea jp-Cell-inputArea -.. image:: ../images/camera_API_files/camera_API_21_0.png + .. container:: jp-InputPrompt jp-InputArea-prompt + In [3]: -**Instance Segmentation** + .. container:: + jp-CodeMirrorEditor jp-Editor jp-InputArea-editor -.. code:: ipython3 + .. container:: CodeMirror cm-s-jupyter - output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=1,CaptureType=1,CaptureHeight=256,CaptureWidth=256,IsOutput=True) - image = output['ScreenCapture'] - if image != "": - im = Image.open(BytesIO(base64.b64decode(image))) - imshow(np.asarray(im)) - plt.axis('off') + .. container:: highlight hl-ipython3 + :: + # get connected to server + A.get_connected(port=port) -.. image:: ../images/camera_API_files/camera_API_23_0.png + .. container:: jp-Cell-outputWrapper + .. container:: + jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser -**Semantic segmentation** + .. container:: jp-OutputArea jp-Cell-outputArea -.. code:: ipython3 + .. container:: jp-OutputArea-child - output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=1,CaptureType=2,CaptureHeight=256,CaptureWidth=256,IsOutput=True) - image = output['ScreenCapture'] - if image != "": - im = Image.open(BytesIO(base64.b64decode(image))) - imshow(np.asarray(im)) - plt.axis('off') + .. container:: jp-OutputPrompt jp-OutputArea-prompt + .. container:: jp-RenderedText jp-OutputArea-output + :: -.. image:: ../images/camera_API_files/camera_API_25_0.png + Connecting with port 7858 +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell -**Depth** + .. container:: jp-Cell-inputWrapper -.. code:: ipython3 + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser - output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=1,CaptureType=3,CaptureHeight=256,CaptureWidth=256,IsOutput=True) - image = output['ScreenCapture'] - if image != "": - im = Image.open(BytesIO(base64.b64decode(image))) - imshow(np.asarray(im)) - plt.axis('off') + .. container:: jp-InputArea jp-Cell-inputArea + .. container:: jp-InputPrompt jp-InputArea-prompt + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput -.. image:: ../images/camera_API_files/camera_API_27_0.png + .. rubric:: Examples (Cockpit + Camera)\ `¶ <#Examples-(Cockpit-Camera)>`__ + :name: Examples-(Cockpit-Camera) +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell -**Normals** + .. container:: jp-Cell-inputWrapper -.. code:: ipython3 + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser - output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=1,CaptureType=4,CaptureHeight=256,CaptureWidth=256,IsOutput=True) - image = output['ScreenCapture'] - if image != "": - im = Image.open(BytesIO(base64.b64decode(image))) - imshow(np.asarray(im)) - plt.axis('off') + .. container:: jp-InputArea jp-Cell-inputArea + .. container:: jp-InputPrompt jp-InputArea-prompt + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput -.. image:: ../images/camera_API_files/camera_API_29_0.png + **Scene Capture** +.. container:: jp-Cell jp-CodeCell jp-Notebook-cell -**Optical Flow** + .. container:: jp-Cell-inputWrapper -.. code:: ipython3 + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser - ## no movement no optcal flow - output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=1,CaptureType=5,CaptureHeight=256,CaptureWidth=256,IsOutput=True) - image = output['ScreenCapture'] - if image != "": - im = Image.open(BytesIO(base64.b64decode(image))) - imshow(np.asarray(im)) - plt.axis('off') + .. container:: jp-InputArea jp-Cell-inputArea + .. container:: jp-InputPrompt jp-InputArea-prompt + In [6]: -.. image:: ../images/camera_API_files/camera_API_31_0.png + .. container:: + jp-CodeMirrorEditor jp-Editor jp-InputArea-editor + .. container:: CodeMirror cm-s-jupyter -Reference -========= + .. container:: highlight hl-ipython3 + + :: + + output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=1,CaptureType=0,CaptureHeight=256,CaptureWidth=256,IsOutput=True) + image = output['ScreenCapture'] + if image != "": + im = Image.open(BytesIO(base64.b64decode(image))) + imshow(np.asarray(im)) + plt.axis('off') + + .. container:: jp-Cell-outputWrapper + + .. container:: + jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser + + .. container:: jp-OutputArea jp-Cell-outputArea + + .. container:: jp-OutputArea-child + + .. container:: jp-OutputPrompt jp-OutputArea-prompt + + .. container:: jp-RenderedText jp-OutputArea-output + + :: + + CPU times: user 44.6 s, sys: 7.02 s, total: 51.6 s + Wall time: 51.6 s + + .. container:: jp-OutputArea-child + + .. container:: jp-OutputPrompt jp-OutputArea-prompt + + .. container:: jp-RenderedImage jp-OutputArea-output + + |image0| + +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + + **Instance Segmentation** + +.. container:: jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + In [ ]: + + .. container:: + jp-CodeMirrorEditor jp-Editor jp-InputArea-editor + + .. container:: CodeMirror cm-s-jupyter + + .. container:: highlight hl-ipython3 + + :: + + output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=0,CaptureType=1,CaptureHeight=256,CaptureWidth=256,IsOutput=True) + image = output['ScreenCapture'] + if image != "": + im = Image.open(BytesIO(base64.b64decode(image))) + imshow(np.asarray(im)) + plt.axis('off') + +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + + **Semantic segmentation** + +.. container:: jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + In [ ]: + + .. container:: + jp-CodeMirrorEditor jp-Editor jp-InputArea-editor + + .. container:: CodeMirror cm-s-jupyter + + .. container:: highlight hl-ipython3 + + :: + + output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=0,CaptureType=2,CaptureHeight=256,CaptureWidth=256,IsOutput=True) + image = output['ScreenCapture'] + if image != "": + im = Image.open(BytesIO(base64.b64decode(image))) + imshow(np.asarray(im)) + plt.axis('off') + +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + + **Depth** + +.. container:: jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + In [ ]: + + .. container:: + jp-CodeMirrorEditor jp-Editor jp-InputArea-editor + + .. container:: CodeMirror cm-s-jupyter + + .. container:: highlight hl-ipython3 + + :: + + output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=0,CaptureType=3,CaptureHeight=256,CaptureWidth=256,IsOutput=True) + image = output['ScreenCapture'] + if image != "": + im = Image.open(BytesIO(base64.b64decode(image))) + imshow(np.asarray(im)) + plt.axis('off') + +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + + **Normals** + +.. container:: jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + In [ ]: + + .. container:: + jp-CodeMirrorEditor jp-Editor jp-InputArea-editor + + .. container:: CodeMirror cm-s-jupyter + + .. container:: highlight hl-ipython3 + + :: + + output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=0,CaptureType=4,CaptureHeight=256,CaptureWidth=256,IsOutput=True) + image = output['ScreenCapture'] + if image != "": + im = Image.open(BytesIO(base64.b64decode(image))) + imshow(np.asarray(im)) + plt.axis('off') + +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + + **Optical Flow** + +.. container:: jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + In [ ]: + + .. container:: + jp-CodeMirrorEditor jp-Editor jp-InputArea-editor + + .. container:: CodeMirror cm-s-jupyter + + .. container:: highlight hl-ipython3 + + :: + + output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=0,CaptureType=5,CaptureHeight=256,CaptureWidth=256,IsOutput=True) + image = output['ScreenCapture'] + if image != "": + im = Image.open(BytesIO(base64.b64decode(image))) + imshow(np.asarray(im)) + plt.axis('off') + +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + + .. rubric:: Example (External + Camera)\ `¶ <#Example-(External-Camera)>`__ + :name: Example-(External-Camera) + +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + + **Scene Capture** + +.. container:: jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + In [ ]: + + .. container:: + jp-CodeMirrorEditor jp-Editor jp-InputArea-editor + + .. container:: CodeMirror cm-s-jupyter + + .. container:: highlight hl-ipython3 + + :: + + output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=1,CaptureType=0,CaptureHeight=256,CaptureWidth=256,IsOutput=True) + image = output['ScreenCapture'] + if image != "": + im = Image.open(BytesIO(base64.b64decode(image))) + imshow(np.asarray(im)) + plt.axis('off') + +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + + **Instance Segmentation** + +.. container:: jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + In [ ]: + + .. container:: + jp-CodeMirrorEditor jp-Editor jp-InputArea-editor + + .. container:: CodeMirror cm-s-jupyter + + .. container:: highlight hl-ipython3 + + :: + + output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=1,CaptureType=1,CaptureHeight=256,CaptureWidth=256,IsOutput=True) + image = output['ScreenCapture'] + if image != "": + im = Image.open(BytesIO(base64.b64decode(image))) + imshow(np.asarray(im)) + plt.axis('off') + +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + + **Semantic segmentation** + +.. container:: jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + In [ ]: + + .. container:: + jp-CodeMirrorEditor jp-Editor jp-InputArea-editor + + .. container:: CodeMirror cm-s-jupyter + + .. container:: highlight hl-ipython3 + + :: + + output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=1,CaptureType=2,CaptureHeight=256,CaptureWidth=256,IsOutput=True) + image = output['ScreenCapture'] + if image != "": + im = Image.open(BytesIO(base64.b64decode(image))) + imshow(np.asarray(im)) + plt.axis('off') + +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + + **Depth** + +.. container:: jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + In [ ]: + + .. container:: + jp-CodeMirrorEditor jp-Editor jp-InputArea-editor + + .. container:: CodeMirror cm-s-jupyter + + .. container:: highlight hl-ipython3 + + :: + + output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=1,CaptureType=3,CaptureHeight=256,CaptureWidth=256,IsOutput=True) + image = output['ScreenCapture'] + if image != "": + im = Image.open(BytesIO(base64.b64decode(image))) + imshow(np.asarray(im)) + plt.axis('off') + +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + + **Normals** + +.. container:: jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + In [ ]: + + .. container:: + jp-CodeMirrorEditor jp-Editor jp-InputArea-editor + + .. container:: CodeMirror cm-s-jupyter + + .. container:: highlight hl-ipython3 + + :: + + output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=1,CaptureType=4,CaptureHeight=256,CaptureWidth=256,IsOutput=True) + image = output['ScreenCapture'] + if image != "": + im = Image.open(BytesIO(base64.b64decode(image))) + imshow(np.asarray(im)) + plt.axis('off') + +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + + **Optical Flow** + +.. container:: jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + In [ ]: + + .. container:: + jp-CodeMirrorEditor jp-Editor jp-InputArea-editor + + .. container:: CodeMirror cm-s-jupyter + + .. container:: highlight hl-ipython3 + + :: + + ## no movement no optcal flow + output = A.set_camera(ActiveCamera=1, IsCapture=True,CaptureCamera=1,CaptureType=5,CaptureHeight=256,CaptureWidth=256,IsOutput=True) + image = output['ScreenCapture'] + if image != "": + im = Image.open(BytesIO(base64.b64decode(image))) + imshow(np.asarray(im)) + plt.axis('off') + +.. container:: jp-Cell jp-MarkdownCell jp-Notebook-cell + + .. container:: jp-Cell-inputWrapper + + .. container:: + jp-Collapser jp-InputCollapser jp-Cell-inputCollapser + + .. container:: jp-InputArea jp-Cell-inputArea + + .. container:: jp-InputPrompt jp-InputArea-prompt + + .. container:: + jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput + + .. rubric:: Reference\ `¶ <#Reference>`__ + :name: Reference + + #. `Replacement + Shaders `__ + #. `Command + Buffers `__ + #. `Depth and Motion + Vectors `__ + #. `MaterialPropertyBlock `__ + +.. |image0| image:: %0A + :class: jp-needs-light-background -1. `Replacement - Shaders `__ -2. `Command - Buffers `__ -3. `Depth and Motion - Vectors `__ -4. `MaterialPropertyBlock `__