-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathextinction_eval.py
376 lines (341 loc) · 13.8 KB
/
extinction_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
''' Runs experiments for our alife20 paper, exploring the effect of extinction events on the
complexity of maps generated by a trained RL agent.'''
import os
import shutil
import re
import time
import matplotlib.pyplot as plt
import gym
import numpy as np
import torch
from PIL import Image
import game_of_life
import gym_city
from arguments import get_parser
from envs import VecPyTorch, make_vec_envs
from evaluate import Evaluator
from model import Policy
from utils import get_vec_normalize
#plt.switch_backend('agg')
def parse_cl_args():
#TODO: away with this function, in theory.
'''
Takes arguments from the command line and ignores as many of them as possible.
'''
# assume the user passes no args, and these are defaults/dummy
#TODO: trash all of this
parser = get_parser()
parser.add_argument('--non-det', action='store_true', default=False,
help='whether to use a non-deterministic policy')
parser.add_argument('--active-column', default=None, type=int,
help='Run only one vertical column of a fractal model to see what it\
has learnt independently')
parser.add_argument('--evaluate', action='store_true', default=False,
help='record trained network\'s performance')
# add any experiment-specific args here
args = parser.parse_args()
args.im_render = True
#args.render = True
args.random_terrain = False
args.random_builds = False
return args
class ExtinctionEvaluator():
'''Run a series of experiments to evaluate the effect of extinction events on the complexity
of the behaviour of a trained agent.'''
def __init__(self, args, im_log_dir):
self.im_log_dir = im_log_dir
self.log_dir = args.load_dir
env_name = args.env_name
if torch.cuda.is_available() and not args.no_cuda:
args.cuda = True
device = torch.device('cuda')
map_location = torch.device('cuda')
else:
args.cuda = False
device = torch.device('cpu')
map_location = torch.device('cpu')
try:
checkpoint = torch.load(os.path.join(args.load_dir, env_name + '.tar'),
map_location=map_location)
except FileNotFoundError:
print('load-dir does not start with valid gym environment id, using command line args')
env_name = args.env_name
checkpoint = torch.load(os.path.join(args.load_dir, env_name + '.tar'),
map_location=map_location)
saved_args = checkpoint['args']
past_frames = checkpoint['n_frames']
args.past_frames = past_frames
env_name = saved_args.env_name
if 'Micropolis' in env_name:
args.power_puzzle = saved_args.power_puzzle
if not args.evaluate and not 'GoLMulti' in env_name:
# assume we just want to observe/interact w/ a single env.
args.num_proc = 1
dummy_args = args
envs = make_vec_envs(env_name, args.seed + 1000, args.num_processes,
None, args.load_dir, args.add_timestep, device=device,
allow_early_resets=False,
args=dummy_args)
print(args.load_dir)
if isinstance(envs.observation_space, gym.spaces.Discrete):
in_width = 1
num_inputs = envs.observation_space.n
elif isinstance(envs.observation_space, gym.spaces.Box):
if len(envs.observation_space.shape) == 3:
in_w = envs.observation_space.shape[1]
in_h = envs.observation_space.shape[2]
else:
in_w = 1
in_h = 1
num_inputs = envs.observation_space.shape[0]
if isinstance(envs.action_space, gym.spaces.Discrete):
out_w = 1
out_h = 1
num_actions = int(envs.action_space.n // (in_w * in_h))
#if 'Micropolis' in env_name:
# num_actions = env.venv.venv.envs[0].num_tools
#elif 'GameOfLife' in env_name:
# num_actions = 1
#else:
# num_actions = env.action_space.n
elif isinstance(envs.action_space, gym.spaces.Box):
out_w = envs.action_space.shape[0]
out_h = envs.action_space.shape[1]
num_actions = envs.action_space.shape[-1]
# We need to use the same statistics for normalization as used in training
#actor_critic, ob_rms = \
# torch.load(os.path.join(args.load_dir, args.env_name + ".pt"))
if saved_args.model == 'fractal':
saved_args.model = 'FractalNet'
actor_critic = Policy(envs.observation_space.shape, envs.action_space,
base_kwargs={'map_width': args.map_width,
'recurrent': args.recurrent_policy,
'in_w': in_w, 'in_h': in_h, 'num_inputs': num_inputs,
'out_w': out_w, 'out_h': out_h },
curiosity=args.curiosity, algo=saved_args.algo,
model=saved_args.model, args=saved_args)
actor_critic.to(device)
torch.nn.Module.dump_patches = True
actor_critic.load_state_dict(checkpoint['model_state_dict'])
ob_rms = checkpoint['ob_rms']
if 'fractal' in args.model.lower():
new_recs = args.n_recs - saved_args.n_recs
for nr in range(new_recs):
actor_critic.base.auto_expand()
print('expanded network:\n', actor_critic.base)
if args.active_column is not None \
and hasattr(actor_critic.base, 'set_active_column'):
actor_critic.base.set_active_column(args.active_column)
vec_norm = get_vec_normalize(envs)
if vec_norm is not None:
vec_norm.eval()
vec_norm.ob_rms = ob_rms
self.actor_critic = actor_critic
self.envs = envs
self.args = args
def run_experiment(self, n_epis, max_step, map_width, extinction_type, extinction_prob,
extinction_dels):
'''Evaluate the effect of a single type of extinction event (or none).'''
args = self.args
actor_critic = self.actor_critic
envs = self.envs
im_log_dir = '{}/xttyp:{}_stp:{}'.format(
self.im_log_dir,
extinction_type,
#extinction_prob,
#map_width,
max_step
)
envs.venv.venv.set_log_dir(im_log_dir)
# adjust envs in general
envs.venv.venv.setMapSize(map_width, max_step=max_step, render=args.render)
if extinction_type is not None:
# adjust extinguisher wrapper
envs.venv.venv.set_extinction_type(extinction_type, extinction_prob, extinction_dels)
# adjust image render wrapper
envs.venv.venv.reset_episodes(im_log_dir)
envs.venv.venv.init_storage()
recurrent_hidden_states = torch.zeros(1, actor_critic.recurrent_hidden_state_size)
masks = torch.zeros(1, 1)
obs = envs.reset()
#obs = torch.Tensor(obs)
player_act = None
n_episode = 0
while n_episode < n_epis:
with torch.no_grad():
value, action, _, recurrent_hidden_states = actor_critic.act(
obs, recurrent_hidden_states, masks, deterministic=not args.non_det,
player_act=player_act)
# Observe reward and next obs
obs, reward, done, infos = envs.step(action)
if args.render:
envs.venv.venv.render()
if done.any():
n_episode += np.sum(done.astype(int))
player_act = None
if infos[0]:
if 'player_move' in infos[0].keys():
player_act = infos[0]['player_move']
#masks.fill_(0.0 if done else 1.0)
envs.reset()
#def run_experiment():
# '''Measure True under various conditions.'''
# map_sizes = self.map_sizes
# extinction_types = self.extinction_types
# extinction_intervals = self.extinction_intervals
# evaluator = ExtinctionEvaluator()
#
# for map_size in map_sizes:
# for extinction_type in extinction_types:
# for extinction_interval in extinction_intervals:
# evaluator.run_experiment(map_size, extinction_type, extinction_interval)
def get_xy(exp_dir):
'''Plot the mean episode by mean size of the functional jpeg in terms of timestep.
- exp_dir: location of images
Return xy coordinates of mean episode
'''
ims = os.listdir(exp_dir)
# map timesteps to a tuple (mean_size, num_ims)
step2size = {}
for im in ims:
step_search = re.search(r'([\d]+)\.jpg', im)
step = step_search.group(1)
im_path = os.path.join(exp_dir, im)
size = os.stat(im_path).st_size
if step in step2size:
mean_size, num_ims = step2size[step]
mean_size = (mean_size * num_ims + size) / (num_ims + 1)
num_ims += 1
step2size[step] = (mean_size, num_ims)
else:
step2size[step] = (size, 1)
xs = []
ys = []
for x, (y, _) in step2size.items():
xs += [x]
ys += [y]
xy = zip(xs, ys)
xy = sorted(xy, key = lambda x: int(x[0]))
xs, ys = zip(*xy)
return xs, ys
def visualize_experiments(log_dir):
'''Visualize results from extinction-compressibility experiments.
- load-dir: stores folder of experiments, within which are compressed images named by rank and
episode
'''
log_dir = log_dir
xtinct_dirs = os.listdir(log_dir)
xt_dir_paths = [os.path.join(log_dir, xt_dir) for xt_dir in xtinct_dirs]
# make sure the order of local and global paths correspond
dirs_types = zip(xtinct_dirs, xt_dir_paths)
dirs_types = sorted(dirs_types, key = lambda x: str(x[0]))
xtinct_dirs, xt_dir_paths = zip(*dirs_types)
xt_ims = [os.listdir(xt_dir) for xt_dir in xt_dir_paths if not os.path.isfile(xt_dir) ]
for i, trial_name in enumerate(xtinct_dirs):
print(trial_name)
srch_xttyp = re.search(r'xttyp\:([a-zA-Z]+)', trial_name)
if srch_xttyp is None:
continue
xt_type = srch_xttyp.group(1)
xt_dir = xt_dir_paths[i]
exp_title = ' '.join(xt_dir.split('/')[-2:])
if os.path.isfile(xt_dir):
continue
x, y = get_xy(xt_dir)
exp_plot, = plt.plot(x, y)
print(xt_type)
exp_plot.set_label(xt_type)
srch_xtprob = re.search(r'xtprob\:(\d.[\d]+)', log_dir)
xt_prob = srch_xtprob.group(1)
xt_interval = int(1 / float(xt_prob))
graph_title = 'extinction interval = {}'.format(xt_interval)
plt.title(graph_title)
plt.xlabel('timesteps')
plt.ylabel('bytes per jpg')
plt.xticks([25 * i for i in range(5)])
plt.legend()
plt.savefig(os.path.join(log_dir, '{}.png'.format(graph_title)), format='png')
#plt.show()
class ExtinctionExperimenter():
'''
Coordinate between experimentation and visualization.
'''
def __init__(self, log_dir):
args = parse_cl_args()
env_name = log_dir.split('/')[-1].split('_')[0]
args.env_name = env_name
# Experiment global parameters
self.n_epis = 20
self.max_step = [1000]
self.map_sizes = [
16,
#32,
#64
]
self.xt_types = [
None,
'age',
'spatial',
'random'
]
# TODO: automate xt_probs
self.xt_probs = [args.extinction_prob]
self.xt_dels = [15]
self.map_sizes = [args.map_width]
#self.xt_probs = [
# 0.005,
# #0.01,
# #0.05,
# #0.1
# ]
exp_name = 'test_map:{}_xtprob:{}_xtdels:{}'.format(
self.map_sizes[0],
float(self.xt_probs[0]),
self.xt_dels[0])
self.log_dir = log_dir
args.load_dir = log_dir
im_log_dir = os.path.join(log_dir, exp_name)
try:
os.mkdir(im_log_dir)
except FileExistsError:
#shutil.rmtree(im_log_dir)
#os.mkdir(im_log_dir)
pass
self.im_log_dir = im_log_dir
self.evaluator = ExtinctionEvaluator(args, im_log_dir)
def run_experiments(self):
'''Run experiments and produce data.'''
evaluator = self.evaluator
for mst in self.max_step:
for msz in self.map_sizes:
for xtd in self.xt_dels:
for xtt in self.xt_types:
if xtt is None:
xtp = 0
evaluator.run_experiment(self.n_epis, mst, msz, xtt, xtp, xtd)
else:
for xtp in self.xt_probs:
evaluator.run_experiment(self.n_epis, mst, msz, xtt, xtp, xtd)
def visualize_experiments(self):
'''
Visualize compressibility data stored in subfolders of the current directory.
'''
return visualize_experiments(self.im_log_dir)
if __name__ == "__main__":
VIS_ONLY = False
#VIS_ONLY = True
LOG_DIR = os.path.abspath(os.path.join(
'trained_models',
'a2c_FractalNet_drop',
'MicropolisEnv-v0_w16_1000s_noExtinct.bkp',
))
EXPERIMENTER = ExtinctionExperimenter(LOG_DIR)
#TODO: hacky; detect incomplete folders automatically,
# should save numpy object w/ stats in folder
if not VIS_ONLY:
try:
EXPERIMENTER.run_experiments()
# broadcast problem when sizing up map #TODO: adjust vec_envs to prevent this
except ValueError as ve:
print(ve)
EXPERIMENTER.visualize_experiments()