-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathevaluate.py
224 lines (205 loc) · 10.1 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import copy
import glob
import os
import time
from collections import deque
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from shutil import copyfile
from arguments import get_args
from envs import make_vec_envs
from model import Policy
from storage import RolloutStorage, CuriosityRolloutStorage
from utils import get_vec_normalize
from visualize import Plotter
import algo
import csv
class Evaluator(object):
''' Runs inference on a bunch of envs'''
def __init__(self, args, actor_critic, device, envs=None, vec_norm=None,
frozen=False, fieldnames=['r', 'l', 't']):
''' frozen: we are not in the main training loop, but evaluating frozen model separately'''
if frozen:
self.win_eval = None
past_frames = args.past_frames
self.frozen = frozen
#eval_args.render = True
self.device = device
#if args.model == 'fractal':
# for i in range(-1, args.n_recs):
# eval_log_dir = args.log_dir + "_eval_col_{}".format(i)
# try:
# os.makedirs(eval_log_dir)
# except OSError:
# files = glob.glob(os.path.join(eval_log_dir, '*.monitor.csv'))
# for f in files:
# os.remove(f)
# setattr(self, 'eval_log_dir_col_{}'.format(i), eval_log_dir)
if frozen:
if 'GameOfLife' in args.env_name:
self.eval_log_dir = args.log_dir + "/eval_{}-frames_w{}_{}rec_{}s_{}pl".format(past_frames,
args.map_width, args.n_recs, args.max_step, args.prob_life, '.1f')
else:
self.eval_log_dir = args.log_dir + "/eval_{}-frames_w{}_{}rec_{}f".format(past_frames,
args.map_width, args.n_recs, args.max_step, '.1f')
merge_col_logs = True
else:
self.eval_log_dir = args.log_dir + "_eval"
merge_col_logs = False
try:
os.makedirs(self.eval_log_dir)
except OSError:
files = glob.glob(os.path.join(self.eval_log_dir, '*.monitor.csv'))
files += glob.glob(os.path.join(self.eval_log_dir, '*_eval.csv'))
if args.overwrite:
for f in files:
os.remove(f)
elif files:
merge_col_logs = True
self.args = args
self.actor_critic = actor_critic
self.num_eval_processes = 1
if envs and False:
self.eval_envs = envs
self.vec_norm = vec_norm
self.num_eval_processes = args.num_processes
else:
#print('making envs in Evaluator: ', self.args.env_name, self.args.seed + self.num_eval_processes, self.num_eval_processes,
# self.args.gamma, self.eval_log_dir, self.args.add_timestep, self.device, True, self.args)
eval_args = copy.deepcopy(args)
eval_args.render = args.render
self.eval_envs = make_vec_envs(
self.args.env_name, self.args.seed + self.num_eval_processes, self.num_eval_processes,
self.args.gamma, self.eval_log_dir, self.args.add_timestep, self.device, False, args=eval_args)
self.vec_norm = get_vec_normalize(self.eval_envs)
if self.vec_norm is not None:
self.vec_norm.eval()
self.vec_norm.ob_rms = get_vec_normalize(self.eval_envs).ob_rms
self.tstart = time.time()
model = actor_critic.base
if args.model == 'FractalNet':
n_cols = model.n_cols
else:
n_cols = 0
self.plotter = Plotter(n_cols, self.eval_log_dir, self.num_eval_processes, max_steps=self.args.max_step)
eval_cols = range(-1, n_cols)
if args.model == 'fixed' and model.RAND:
eval_cols = model.eval_recs
if eval_cols is not None:
for i in eval_cols:
log_file = '{}/col_{}_eval.csv'.format(self.eval_log_dir, i)
if merge_col_logs and os.path.exists(log_file):
merge_col_log = True
else:
merge_col_log = False
if merge_col_log:
if len(eval_cols) > 1 and i == eval_cols[-2] and self.args.auto_expand: # problem if we saved model after auto-expanding, without first evaluating!
# for the newly added column, we duplicate the last col.'s records
new_col_log_file = '{}/col_{}_eval.csv'.format(self.eval_log_dir, i + 1)
copyfile(log_file, new_col_log_file)
old_log = '{}_old'.format(log_file)
os.rename(log_file, old_log)
log_file_col = open(log_file, mode='w')
setattr(self, 'log_file_col_{}'.format(i), log_file_col)
writer_col = csv.DictWriter(log_file_col, fieldnames=fieldnames)
setattr(self, 'writer_col_{}'.format(i), writer_col)
if merge_col_log:
with open(old_log, newline='') as old:
reader = csv.DictReader(old, fieldnames=fieldnames)
h = 0
try: # in case of null bytes resulting from interrupted logging
for row in reader:
if h > 1:
row['t'] = 0.0001 * h # HACK: false times for past logs to maintain order
writer_col.writerow(row)
h += 1
except csv.Error: # I guess this error happens at most once then?
h_i = 0
for row in reader:
if h_i > h:
row['t'] = 0.0001 * h_i # HACK: false times for past logs to maintain order
writer_col.writerow(row)
h_i += 1
os.remove(old_log)
else:
writer_col.writeheader()
log_file_col.flush()
def evaluate(self, column=None, num_recursions=None):
model = self.actor_critic.base
if num_recursions is not None:
model.num_recursions = num_recursions
if column is not None and self.args.model == 'FractalNet':
model.set_active_column(column)
self.actor_critic.visualize_net()
eval_episode_rewards = []
obs = self.eval_envs.reset()
if 'LSTM' in self.args.model:
recurrent_hidden_state_size = self.actor_critic.base.get_recurrent_state_size()
eval_recurrent_hidden_states = torch.zeros(2, self.num_eval_processes,
*recurrent_hidden_state_size, device=self.device)
else:
recurrent_hidden_state_size = self.actor_critic.recurrent_hidden_state_size
eval_recurrent_hidden_states = torch.zeros(self.num_eval_processes,
recurrent_hidden_state_size, device=self.device)
eval_masks = torch.zeros(self.num_eval_processes, 1, device=self.device)
i = 0
done = np.array([False])
while not (done.all() or i > self.args.max_step):
#while len(eval_episode_rewards) < self.num_eval_processes:
#while i < self.args.max_step:
with torch.no_grad():
_, action, eval_recurrent_hidden_states, _ = self.actor_critic.act(
obs, eval_recurrent_hidden_states, eval_masks, deterministic=True)
# Observe reward and next obs
obs, reward, done, infos = self.eval_envs.step(action)
if self.args.render:
if self.args.num_processes == 1:
if not ('Micropolis' in self.args.env_name or 'GameOfLife' in self.args.env_name or 'GoL' in self.args.env_name):
self.eval_envs.venv.venv.render()
else:
pass
#self.eval_envs.venv.venv.envs[0].render()
else:
if not ('Micropolis' in self.args.env_name or 'GameOfLife' in self.args.env_name or 'GoL' in self.args.env_name):
self.eval_envs.venv.venv.render()
else:
pass
#self.eval_envs.venv.venv.remotes[0].send(('render', None))
#self.eval_envs.venv.venv.remotes[0].recv()
eval_masks = torch.FloatTensor([[0.0] if done_ else [1.0]
for done_ in done])
for info in infos:
if 'episode' in info.keys():
eval_episode_rewards.append(info['episode']['r'])
i += 1
self.eval_envs.reset()
#self.eval_envs.close()
eprew = np.mean(eval_episode_rewards)
args = self.args
if not self.frozen:
# note: eval interval given in terms of updates consisting of num_steps each
n_frame = args.num_steps * args.num_processes * args.eval_interval # relative to training session
else:
n_frame = args.max_step * args.num_processes
if num_recursions is not None:
column = num_recursions
if column is not None:
print(" Column {}".format(column))
log_info = {'r': round(eprew, 6), 'l': n_frame, 't': round(time.time() - self.tstart, 6)}
writer, log_file = getattr(self, 'writer_col_{}'.format(column)),\
getattr(self, 'log_file_col_{}'.format(column))
writer.writerow(log_info)
log_file.flush()
print(" Evaluation using {} episodes: mean reward {:.5f}\n".
format(len(eval_episode_rewards),
eprew))
if self.frozen:
if args.vis:
from visdom import Visdom
viz = Visdom(port=args.port)
self.win_eval = self.plotter.bar_plot(viz, self.win_eval, self.eval_log_dir, self.eval_log_dir.split('/')[-1],
args.algo, args.num_frames, n_cols=model.n_cols)