-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathenvs.py
executable file
·456 lines (360 loc) · 15.2 KB
/
envs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import csv
import os
import sys
import time
import gym
import numpy as np
import torch
from baselines import bench
from baselines.common.atari_wrappers import make_atari, wrap_deepmind
from baselines.common.vec_env import VecEnvWrapper
from baselines.common.vec_env.vec_normalize import \
VecNormalize as VecNormalize_
from gym.spaces.box import Box
#from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from dummy_vec_env import DDummyVecEnv as DummyVecEnv
from gym_city.wrappers import Extinguisher, ImRender
#from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
from subproc_vec_env import SubprocVecEnv
class MicropolisMonitor(bench.Monitor):
def __init__(self, env, filename, allow_early_resets=False, reset_keywords=(), info_keywords=()):
self.env = env
self.dist_entropy = 0
append_log = False # are we merging to an existing log file after pause in training?
logfile = filename + '.monitor.csv'
curr_dir = os.curdir
os.chdir(os.path.dirname(os.path.realpath(__file__)))
if os.path.exists(logfile):
append_log = True
old_log = '{}_old'.format(logfile)
os.rename(logfile, old_log)
else:
print('no old logfile {}'.format(logfile))
#raise Exception
info_keywords = (*info_keywords, 'e', 'p')
super(MicropolisMonitor, self).__init__(
env, filename, allow_early_resets=allow_early_resets, reset_keywords=reset_keywords,
info_keywords=info_keywords)
if append_log:
with open(old_log, newline='') as old:
reader = csv.DictReader(old, fieldnames=('r', 'l', 't','e', 'p'))
h = 0
for row in reader:
if h > 1:
row['t'] = 0.0001 * h # HACK: false times for past logs to maintain order
# TODO: logger or results_writer, what's going on here?
if hasattr(self, 'logger'):
self.logger.writerow(row)
self.f.flush()
else:
assert hasattr(self, 'results_writer')
self.results_writer.write_row(row)
#self.results_writer.flush()
h += 1
os.remove(old_log)
os.chdir(curr_dir)
def step(self, action):
if self.needs_reset:
raise RuntimeError("Tried to step environment that needs reset")
ob, rew, done, info = self.env.step(action)
self.rewards.append(rew)
if done:
self.needs_reset = True
eprew = float(sum(self.rewards))
eplen = len(self.rewards)
epinfo = {"r": round(eprew, 6), "l": eplen, "t": round(time.time() - self.tstart, 6),
"e": round(self.dist_entropy, 6)}
if "p" in epinfo.keys():
epinfo["p"] = round(self.curr_param_vals[0].item(), 6)
for k in self.info_keywords:
if False and k != 'e' and k!= 'p':
epinfo[k] = info[k]
self.episode_rewards.append(eprew)
self.episode_lengths.append(eplen)
self.episode_times.append(time.time() - self.tstart)
epinfo.update(self.current_reset_info)
if hasattr(self, 'logger'):
self.logger.writerow(epinfo)
self.f.flush()
else:
assert hasattr(self, 'results_writer')
self.results_writer.write_row(epinfo)
#self.results_writer.flush()
info['episode'] = epinfo
self.total_steps += 1
#print('dones: {}'.format(done))
return (ob, rew, done, info)
def setRewardWeights(self):
return self.env.setRewardWeights()
class MultiMonitor(MicropolisMonitor):
def __init__(self, env, filename, allow_early_resets=False, reset_keywords=(), info_keywords=()):
super(MultiMonitor, self).__init__(env, filename, allow_early_resets=allow_early_resets, reset_keywords=reset_keywords, info_keywords=info_keywords)
''' For GoLMultiEnv'''
def step(self, action):
if self.needs_reset:
raise RuntimeError("Tried to step environment that needs reset")
ob, rew, done, info = self.env.step(action)
self.rewards.append(rew.sum())
if done.all():
self.needs_reset = True
eprew = float(sum(self.rewards))
eplen = len(self.rewards) * self.env.num_proc
epinfo = {"r": round(eprew, 6), "l": eplen, "t": round(time.time() - self.tstart, 6),
"e": round(self.dist_entropy, 6),
"p": round(self.trg_param_vals[0, 0].item(), 6)}
for k in self.info_keywords:
if k != 'e' and k!= 'p':
epinfo[k] = info[k]
self.episode_rewards.append(eprew)
self.episode_lengths.append(eplen)
self.episode_times.append(time.time() - self.tstart)
epinfo.update(self.current_reset_info)
if hasattr(self, 'logger'):
self.logger.writerow(epinfo)
self.f.flush()
else:
assert hasattr(self, 'results_writer')
self.results_writer.write_row(epinfo)
info[0]['episode'] = epinfo
self.total_steps += 1
#print('dones: {}'.format(done))
return (ob, rew, done, info)
try:
import dm_control2gym
except ImportError:
pass
try:
import roboschool
except ImportError:
pass
#try:
# import pybullet_envs
#except ImportError:
# pass
def make_env(env_id, seed, rank, log_dir, add_timestep, allow_early_resets, map_width=20, render_gui=False, print_map=False, parallel_py2gui=False, noreward=False, max_step=None,
args=None):
''' return a function which starts the environment'''
def _thunk():
record = args.record
if env_id.startswith("dm"):
_, domain, task = env_id.split('.')
env = dm_control2gym.make(domain_name=domain, task_name=task)
else:
env = gym.make(env_id)
if record:
record_dir = log_dir
else:
record_dir = None
if 'gameoflife' in env_id.lower():
if rank == 0:
render = render_gui
else: render = False
env.configure(map_width=map_width, render=render,
prob_life = args.prob_life, record=record_dir,
max_step=max_step)
if 'golmulti' in env_id.lower():
multi_env = True
env.configure(map_width=map_width, render=render_gui,
prob_life = args.prob_life, record=record_dir,
max_step=max_step, cuda=args.cuda,
num_proc=args.num_processes)
else:
multi_env = False
if 'micropolis' in env_id.lower():
power_puzzle = False
if args.power_puzzle:
power_puzzle = True
if rank == 0:
print_map = args.print_map
render = render_gui
else:
print_map = False
#render = render_gui
render = False
if args.extinction_type is not None:
ages = True
else:
ages = False
env.setMapSize(map_width, print_map=print_map, render_gui=render,
empty_start=not args.random_terrain, max_step=max_step,
rank=rank,
power_puzzle=power_puzzle,
record=record, random_builds=args.random_builds, poet=args.poet,
ages=ages)
is_atari = hasattr(gym.envs, 'atari') and isinstance(
env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
if is_atari:
env = make_atari(env_id)
env.seed(seed + rank)
obs_shape = env.observation_space.shape
if add_timestep and len(
obs_shape) == 1 and str(env).find('TimeLimit') > -1:
env = AddTimestep(env)
if multi_env:
env = MultiMonitor(env, os.path.join(log_dir, str(rank)),
allow_early_resets=True)
else:
print(log_dir, rank)
if args.vis:
env = MicropolisMonitor(env, os.path.join(log_dir, str(rank)),
allow_early_resets=True)
#print(log_dir)
#
#print(type(env))
#print(dir(env))
#raise Exception
if is_atari and len(env.observation_space.shape) == 3:
env = wrap_deepmind(env)
# If the input has shape (W,H,3), wrap for PyTorch convolutions
obs_shape = env.observation_space.shape
if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
env = TransposeImage(env)
#FIXME: this is just hack to make our extinction experiment loop work.
if args.extinction_type is not None:
env = Extinguisher(env, args.extinction_type, args.extinction_prob)
if args.im_render:
print('wrapping id imrender')
env = ImRender(env, log_dir, rank)
assert env is not None
return env
return _thunk
def make_vec_envs(env_name, seed, num_processes, gamma, log_dir, add_timestep,
device, allow_early_resets, num_frame_stack=None,
args=None):
if 'golmultienv' in env_name.lower():
num_processes=1 # smuggle in real num_proc in args so we can run them as one NN
envs = [make_env(env_name, seed, i, log_dir, add_timestep,
allow_early_resets, map_width=args.map_width, render_gui=args.render,
print_map=args.print_map, noreward=args.no_reward, max_step=args.max_step,
args=args)
for i in range(num_processes)]
if 'golmultienv' in env_name.lower():
return envs[0]()
if len(envs) > 1:
print(envs)
envs = SubprocVecEnv(envs)
else:
if sys.version[0] =='2':
envs = DummyVecEnv('DummyVecEnv', (), {1:envs})
else:
envs = DummyVecEnv(envs)
if len(envs.observation_space.shape) == 1:
if gamma is None:
envs = VecNormalize(envs, ret=False)
else:
envs = VecNormalize(envs, gamma=gamma)
envs = VecPyTorch(envs, device)
if num_frame_stack is not None:
print('stacking {} frames'.format(num_frame_stack))
envs = VecPyTorchFrameStack(envs, num_frame_stack, device)
elif len(envs.observation_space.shape) == 3:
envs = VecPyTorchFrameStack(envs, 1, device)
return envs
# Can be used to test recurrent policies for Reacher-v2
class MaskGoal(gym.ObservationWrapper):
def observation(self, observation):
if self.env._elapsed_steps > 0:
observation[-2:0] = 0
return observation
class AddTimestep(gym.ObservationWrapper):
def __init__(self, env=None):
super(AddTimestep, self).__init__(env)
self.observation_space = Box(
self.observation_space.low[0],
self.observation_space.high[0],
[self.observation_space.shape[0] + 1],
dtype=self.observation_space.dtype)
def observation(self, observation):
return np.concatenate((observation, [self.env._elapsed_steps]))
class TransposeImage(gym.ObservationWrapper):
def __init__(self, env=None):
super(TransposeImage, self).__init__(env)
obs_shape = self.observation_space.shape
self.observation_space = Box(
self.observation_space.low[0, 0, 0],
self.observation_space.high[0, 0, 0],
[obs_shape[2], obs_shape[1], obs_shape[0]],
dtype=self.observation_space.dtype)
def observation(self, observation):
return observation.transpose(2, 0, 1)
class VecPyTorch(VecEnvWrapper):
def __init__(self, venv, device):
"""Return only every `skip`-th frame"""
super(VecPyTorch, self).__init__(venv)
self.device = device
# TODO: Fix data types
def reset(self):
obs = self.venv.reset()
### micropolis ###
obs = np.array(obs)
### ########## ###
obs = torch.from_numpy(obs).int().to(self.device)
return obs
def step_async(self, actions):
actions_async = actions.squeeze(1).cpu().numpy()
self.venv.step_async(actions_async)
def step_wait(self):
obs, reward, done, info = self.venv.step_wait()
### micropolis ###
obs = np.array(obs)
### ########## ###
obs = torch.from_numpy(obs).float().to(self.device)
reward = torch.from_numpy(reward).unsqueeze(dim=1).float()
return obs, reward, done, info
def get_param_bounds(self):
return self.venv.get_param_bounds()
class VecNormalize(VecNormalize_):
def __init__(self, *args, **kwargs):
super(VecNormalize, self).__init__(*args, **kwargs)
self.training = True
def _obfilt(self, obs):
if self.ob_rms:
if self.training:
self.ob_rms.update(obs)
obs = np.clip((obs - self.ob_rms.mean) / np.sqrt(self.ob_rms.var + self.epsilon), -self.clipob, self.clipob)
return obs
else:
return obs
def train(self):
self.training = True
def eval(self):
self.training = False
# Derived from
# https://github.com/openai/baselines/blob/master/baselines/common/vec_env/vec_frame_stack.py
class VecPyTorchFrameStack(VecEnvWrapper):
def __init__(self, venv, nstack, device=None):
self.venv = venv
self.nstack = nstack
wos = venv.observation_space # wrapped ob space
self.shape_dim0 = wos.shape[0]
low = np.repeat(wos.low, self.nstack, axis=0)
high = np.repeat(wos.high, self.nstack, axis=0)
if device is None:
device = torch.device('cpu')
self.stacked_obs = torch.zeros((venv.num_envs,) + low.shape).to(device)
observation_space = gym.spaces.Box(
low=low, high=high, dtype=venv.observation_space.dtype)
VecEnvWrapper.__init__(self, venv, observation_space=observation_space)
def step_wait(self):
obs, rews, news, infos = self.venv.step_wait()
self.stacked_obs[:, :-self.shape_dim0] = \
self.stacked_obs[:, self.shape_dim0:]
for (i, new) in enumerate(news):
if new:
self.stacked_obs[i] = 0
self.stacked_obs[:, -self.shape_dim0:] = obs
return self.stacked_obs, rews, news, infos
def reset(self):
obs = self.venv.reset()
self.stacked_obs.zero_()
#print(self.stacked_obs.shape, obs.shape)
self.stacked_obs[:, -self.shape_dim0:] = obs
return self.stacked_obs
def close(self):
self.venv.close()
def get_param_bounds(self):
return self.venv.get_param_bounds()
def set_param_bounds(self, bounds):
return self.venv.venv.set_param_bounds(bounds)
def set_params(self,params):
return self.venv.venv.set_params(params)