-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy patharguments.py
210 lines (193 loc) · 10.2 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
'''Do inference on a trained agent, for qualitative analysis or interactive play.'''
import argparse
import datetime
import torch
def str2bool(val):
'''Interpret relevant strings as boolean values. For argparser.'''
if isinstance(val, bool):
return val
if val.lower() in ('yes', 'true', 't', 'y', '1'):
return True
if val.lower() in ('no', 'false', 'f', 'n', '0'):
return False
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_args():
''' For training.'''
parser = get_parser()
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if not torch.cuda.is_available():
print('CUDA not available')
if args.experiment_name == '':
args.experiment_name += '{}'.format(datetime.datetime.now())
# args.experiment_name = "{}_{}".format(args.experiment_name, datetime.datetime.now())
model_name = args.model
if args.model == 'FractalNet':
if args.rule != 'extend':
model_name += '-{}'.format(args.rule)
#model_name += '-{}recs'.format(args.n_recs)
if args.intra_shr:
model_name += '_intra'
if args.inter_shr:
model_name += '_inter'
if args.drop_path:
model_name += '_drop'
if args.load_dir:
args.save_dir = args.load_dir
args.log_dir = args.load_dir
else:
args.save_dir = "trained_models/{}_{}/{}_w{}_{}s_{}".format(
args.algo,
model_name, args.env_name, args.map_width,
args.max_step,
args.experiment_name)
# otherwise we might cut eval graph short by reloading too much
#args.save_interval = args.eval_interval
return args
def get_parser():
'''The basic set of arguments pertaining to gym-city.'''
parser = argparse.ArgumentParser(description='RL')
parser.add_argument('--algo', default='a2c',
help='algorithm to use: a2c | ppo | acktr')
parser.add_argument('--lr', type=float, default=7e-4,
help='learning rate (default: 7e-4)')
parser.add_argument('--eps', type=float, default=1e-5,
help='RMSprop optimizer epsilon (default: 1e-5)')
parser.add_argument('--alpha', type=float, default=0.99,
help='RMSprop optimizer apha (default: 0.99)')
parser.add_argument('--gamma', type=float, default=0.99,
help='discount factor for rewards (default: 0.99)')
parser.add_argument('--use-gae', action='store_true', default=False,
help='use generalized advantage estimation')
parser.add_argument('--tau', type=float, default=0.95,
help='gae parameter (default: 0.95)')
parser.add_argument('--entropy-coef', type=float, default=0.01,
help='entropy term coefficient (default: 0.01)')
parser.add_argument('--value-loss-coef', type=float, default=0.5,
help='value loss coefficient (default: 0.5)')
parser.add_argument('--max-grad-norm', type=float, default=0.5,
help='max norm of gradients (default: 0.5)')
parser.add_argument('--seed', type=int, default=1,
help='random seed (default: 1)')
parser.add_argument('--num-processes', type=int, default=12,
help='how many training CPU processes to use (default: 12)')
parser.add_argument('--num-steps', type=int, default=5,
help='number of forward steps in A2C (default: 5)')
parser.add_argument('--ppo-epoch', type=int, default=4,
help='number of ppo epochs (default: 4)')
parser.add_argument('--num-mini-batch', type=int, default=32,
help='number of batches for ppo (default: 32)')
parser.add_argument('--clip-param', type=float, default=0.2,
help='ppo clip parameter (default: 0.2)')
parser.add_argument('--log', type=str2bool, default=True)
parser.add_argument('--log-interval', type=int, default=10,
help='log interval, one log per n updates (default: 10)')
parser.add_argument('--save', type=str2bool, default=True)
parser.add_argument('--save-interval', type=int, default=100,
help='save interval, one save per n updates (default: 100)')
parser.add_argument('--eval-interval', type=int, default=None,
help='eval interval, one eval per n updates (default: None)')
parser.add_argument('--vis-interval', type=int, default=100,
help='vis interval, one log per n updates (default: 100)')
parser.add_argument('--num-frames', type=int, default=10e6,
help='number of frames to train (default: 10e6)')
parser.add_argument('--env-name', default='MicropolisEnv-v0',
help='environment to train on (default: MicropolisEnv-v0)')
# parser.add_argument('--log-dir', default='trained_models',
# help='directory to save agent logs (default: /tmp/gym)')
# parser.add_argument('--save-dir', default='./trained_models',
# help='directory to save agent logs (default: ./trained_models/)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--render', action='store_true', default=False,
help="render gui of single agent during training")
parser.add_argument('--print-map', action='store_true', default=False)
parser.add_argument('--add-timestep', action='store_true', default=False,
help='add timestep to observations')
parser.add_argument('--recurrent-policy', action='store_true', default=False,
help='use a recurrent policy')
parser.add_argument('--vis', type=str2bool, default=True,
help='enable visdom visualization')
parser.add_argument('--port', type=int, default=8097,
help='port to run the server on (default: 8097)')
parser.add_argument('--map-width', type=int, default=16,
help="width of micropolis map")
parser.add_argument('--model', default='FractalNet')
parser.add_argument('--curiosity', action='store_true', default=False)
parser.add_argument('--no-reward', action='store_true', default=False)
parser.add_argument('--experiment_name', default='', help='a title for the experiment log')
parser.add_argument('--overwrite', action='store_true', help='overwrite log files and saved model, optimizer')
parser.add_argument('--max-step', type=int, default=200)
######## Fractal Net ########
# parser.add_argument('--squeeze', action='store_true',
# help= 'squeeze outward columns of fractal by recurrent up and down convolution')
# parser.add_argument('--n-conv-recs', default=2,
# help='number of recurrences of convolution at base level of fractal net')
parser.add_argument('--load-dir', default=None,
help='directory to save agent logs (default: ./trained_models/)')
parser.add_argument('--record', default=False, action='store_true',
help='film videos of inference')
########################################### Fractal Nets
parser.add_argument('--drop-path', action='store_true', help='enable global and local drop path on fractal model (ignored otherwise)')
parser.add_argument('--inter-shr', action='store_true',
help='layers shared between columns')
parser.add_argument('--intra-shr', action='store_true',
help='layers shared within columns')
parser.add_argument('--auto-expand', default=False, action = 'store_true',
help='increment fractal recursion of loaded network')
parser.add_argument('--rule', default='extend',
help='which fractal expansion rule to apply if using a fractal network architecture')
parser.add_argument('--n-recs', default=3, type=int,
help='number of times the expansion rule is applied in the construction of a fractal net')
########################################### Micropolis
parser.add_argument('--power-puzzle', action='store_true',
help='a minigame: the agent uses wire to efficiently connect zones.')
#parser.add_argument('--simple-reward', action='store_true',
# help='reward only for overall population according to game')
#parser.add_argument('--traffic-only', action='store_true',
# help='reward only for overall traffic')
parser.add_argument('--random-builds', type=str2bool, default=True,
help='episode begins with random, potentially static (unbulldozable) builds on the map')
parser.add_argument('--random-terrain', default=True, type=str2bool,
help='episode begins on randomly generated micropolis terrain map')
parser.add_argument('--n-chan', type=int, default=64)
parser.add_argument('--val-kern', default=3)
parser.add_argument(
'--prebuild', default=False, help='GoL mini-game \
encouraging blossoming structures')
parser.add_argument(
'--extinction-prob', type=float, default=0.0, help='probability of extinction event')
parser.add_argument(
'--extinction-type', type=str, default=None,
help='type of extinction event')
parser.add_argument('--im-render', action='store_true',
help='Render micropolis as a simplistic image')
########################################### Game of Life
parser.add_argument(
'--prob-life', type=int, default=20,
help='percent chance each tile is alive on reset')
########################################### ICM
parser.add_argument(
'--eta',
type=float,
default=0.01,
metavar='LR',
help='scaling factor for intrinsic reward')
parser.add_argument(
'--beta',
type=float,
default=0.2,
metavar='LR',
help='balance between inverse & forward')
parser.add_argument(
'--lmbda',
type=float,
default=0.1,
metavar='LR',
help='lambda : balance between A2C & icm')
parser.add_argument(
'--poet',
type=str2bool,
default=False,
help='set targets for environment, replaces fixed reward function')
return parser