From fa076ee34764651177af5c08f9da17508a547a5e Mon Sep 17 00:00:00 2001 From: ludwigbothmann <46222472+ludwigbothmann@users.noreply.github.com> Date: Thu, 8 Aug 2024 14:37:58 +0200 Subject: [PATCH] minor changes to example slide for hypothesis spaces --- .../advriskmin/slides-advriskmin-risk-minimizer.tex | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/slides/advriskmin/slides-advriskmin-risk-minimizer.tex b/slides/advriskmin/slides-advriskmin-risk-minimizer.tex index f451879d..01ac9f78 100644 --- a/slides/advriskmin/slides-advriskmin-risk-minimizer.tex +++ b/slides/advriskmin/slides-advriskmin-risk-minimizer.tex @@ -57,21 +57,21 @@ \end{vbframe} \begin{vbframe}{Two short examples} -\textbf{Linear Model with squared loss:}\\ +\textbf{Regression with linear model:}\\ \begin{itemize} \item Model: $f(\xi) = \thetab^\top \xi + \theta_0$ - \item Loss: - $L(\yi, f(\xi)) = \left(\yi - \thetab^\top \xi - \theta_0\right)^2$ + \item Squared loss: + $L(\yi, f(\xi)) = \left(\yi - f(\xi)\right)^2$ \item Hypothesis space: $$\Hspace_{\text{lin}} = \left\{ \xi \mapsto \thetab^\top \xi + \theta_0 : \thetab \in \mathbb{R}^d, \theta_0 \in \mathbb{R} \right\}$$ \end{itemize} \vspace{0.3cm} -\textbf{Shallow MLP with binary CE loss:}\\ +\textbf{Binary classification with shallow MLP:}\\ \begin{itemize} \item Model: $f(\xi) = \bm{w}_2^{\top} \text{ReLU}(\bm{W}_1 \xi + \bm{b}_1) + b_2$ - \item Loss: $L(\yi, f(\xi)) = -(\yi\log(p^{(i)})+(1-\yi)\log(1-p^{(i)}))$ where $p^{(i)} = \sigma(f(\xi))$ - \item Hypothesis space: $$\Hspace_{\text{MLP}} = \left\{ \xi \mapsto \bm{w}_2^{\top} \text{ReLU}(\bm{W}_1 \xi + \bm{b}_1) + b_2: \mathbf{W}_1 \in \mathbb{R}^{h \times d}, \mathbf{b}_1 \in \mathbb{R}^h, \mathbf{w}_2 \in \mathbb{R}^h, b_2 \in \mathbb{R} \right\}$$ + \item Binary cross-entropy loss: $L(\yi, f(\xi)) = -(\yi\log(p^{(i)})+(1-\yi)\log(1-p^{(i)}))$\\ where $p^{(i)} = \sigma(f(\xi))$ (logistic sigmoid) + \item Hypothesis space: {\small $$\Hspace_{\text{MLP}} = \left\{ \xi \mapsto \bm{w}_2^{\top} \text{ReLU}(\bm{W}_1 \xi + \bm{b}_1) + b_2: \mathbf{W}_1 \in \mathbb{R}^{h \times d}, \mathbf{b}_1 \in \mathbb{R}^h, \mathbf{w}_2 \in \mathbb{R}^h, b_2 \in \mathbb{R} \right\}$$} \end{itemize} \end{vbframe}