generated from slds-lmu/lecture_template
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #171 from slds-lmu/support_vectors
add extra slide for linsvm-hard-margin-dual
- Loading branch information
Showing
9 changed files
with
135 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
import os.path as osp | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from sklearn.svm import SVC | ||
|
||
|
||
def main(): | ||
np.random.seed(100) | ||
|
||
slope = -1 | ||
pos_margin_bias = 1 | ||
neg_margin_bias = -1 | ||
num_points_per_class = 16 | ||
num_margin_points_per_class = 8 | ||
|
||
x_1_scale = 2 | ||
shift_scale = 2 | ||
|
||
pos_x_1 = np.random.randn(num_points_per_class, 1) * x_1_scale | ||
pos_x_2 = slope * pos_x_1 + pos_margin_bias | ||
pos_points = np.concatenate([pos_x_1, pos_x_2], axis=1) | ||
|
||
pos_on_margin = np.ones((num_points_per_class,)).astype(bool) | ||
pos_on_margin[:num_margin_points_per_class] = False | ||
|
||
pos_shift = np.random.rand(num_margin_points_per_class, 1) * shift_scale * np.array([1, 1]) | ||
pos_points[~pos_on_margin] += pos_shift | ||
|
||
|
||
neg_x_1 = np.random.randn(num_points_per_class, 1) * x_1_scale | ||
neg_x_2 = slope * neg_x_1 + neg_margin_bias | ||
neg_points = np.concatenate([neg_x_1, neg_x_2], axis=1) | ||
|
||
neg_on_margin = np.ones((num_points_per_class,)).astype(bool) | ||
neg_on_margin[:num_margin_points_per_class] = False | ||
|
||
neg_shift = np.random.rand(num_margin_points_per_class, 1) * shift_scale * np.array([-1, -1]) | ||
neg_points[~neg_on_margin] += neg_shift | ||
|
||
whole_x = np.concatenate([pos_points, neg_points], axis=0) | ||
whole_y = np.concatenate([np.ones(pos_points.shape[0], dtype=int), np.full(neg_points.shape[0], -1, dtype=int)]) | ||
model = SVC(kernel='linear') | ||
model.fit(whole_x, whole_y) | ||
|
||
|
||
is_support = np.zeros_like(whole_y, dtype=bool) | ||
is_support[model.support_] = True | ||
pos_is_support = is_support[:num_points_per_class] | ||
neg_is_support = is_support[num_points_per_class:] | ||
|
||
coef = model.coef_.reshape(-1) | ||
hyperplane_slope = - coef[0] / coef[1] | ||
hyperplane_bias = - model.intercept_ / coef[1] | ||
hyperplane_x_1 = np.linspace(-3, 3, 50) | ||
hyperplane_x_2 = hyperplane_slope * hyperplane_x_1 + hyperplane_bias | ||
|
||
|
||
# visualize orignal data | ||
fig, ax = plt.subplots(1, 1, figsize=(5, 5)) | ||
ax.scatter(pos_points[:, 0], pos_points[:, 1], s=50, label='Class: +1', facecolors='none', edgecolors='r') | ||
ax.scatter(neg_points[:, 0], neg_points[:, 1], s=50, label='Class: -1', facecolors='none', edgecolors='b') | ||
ax.set_title('Scatterplot of Data') | ||
plt.legend() | ||
plt.tight_layout() | ||
plt.savefig(osp.join('../figure', 'linear_svm_support_vectors_1.png'), bbox_inches='tight') | ||
plt.close(fig) | ||
|
||
# visualize support vectors and hyperplane | ||
fig, ax = plt.subplots(1, 1, figsize=(5, 5)) | ||
ax.scatter( | ||
pos_points[~pos_is_support][:, 0], | ||
pos_points[~pos_is_support][:, 1], | ||
s=50, | ||
label='Class: +1', | ||
facecolors='none', | ||
edgecolors='r') | ||
ax.scatter( | ||
pos_points[pos_is_support][:, 0], | ||
pos_points[pos_is_support][:, 1], | ||
marker='v', | ||
s=50, | ||
label='Class: +1 Support Vectors', | ||
c='r' | ||
) | ||
|
||
ax.scatter( | ||
neg_points[~neg_is_support][:, 0], | ||
neg_points[~neg_is_support][:, 1], | ||
s=50, | ||
label='Class: -1', | ||
facecolors='none', | ||
edgecolors='b' | ||
) | ||
ax.scatter( | ||
neg_points[neg_is_support][:, 0], | ||
neg_points[neg_is_support][:, 1], | ||
s=50, | ||
label='Class: -1 Support Vectors', | ||
c='b' | ||
) | ||
|
||
ax.plot(hyperplane_x_1, hyperplane_x_2, color='g') | ||
ax.plot(hyperplane_x_1, slope * hyperplane_x_1 + pos_margin_bias, linestyle='dotted', color='g') | ||
ax.plot(hyperplane_x_1, slope * hyperplane_x_1 + neg_margin_bias, linestyle='dotted', color='g') | ||
ax.set_title('Linear SVM and Support Vectors') | ||
plt.legend() | ||
plt.tight_layout() | ||
plt.savefig(osp.join('../figure/linear_svm_support_vectors_2.png'), bbox_inches='tight') | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters