generated from slds-lmu/lecture_template
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #164 from slds-lmu/reg_plot
add regularization loss surfaces plots
- Loading branch information
Showing
3 changed files
with
83 additions
and
0 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from mpl_toolkits.mplot3d import Axes3D | ||
from scipy.optimize import minimize | ||
|
||
# Data Generation | ||
n = 500 | ||
np.random.seed(0) | ||
x1 = np.random.uniform(-1, 1, n) | ||
x2 = np.random.uniform(-1, 1, n) | ||
epsilon = np.random.normal(0, 0.1, n) | ||
y = -0.5 * x1 + 3 * x2 + epsilon | ||
|
||
# Regularization Norm Functions | ||
def l1_norm(beta1, beta2): | ||
return np.abs(beta1) + np.abs(beta2) | ||
|
||
def l2_norm_squared(beta1, beta2): | ||
return beta1**2 + beta2**2 | ||
|
||
# Updated Regularized Least Squares Objective Function with 1/n factor | ||
def updated_objective(beta, x1, x2, y, lam, regularization): | ||
beta1, beta2 = beta | ||
residuals = y - beta1 * x1 - beta2 * x2 | ||
error_term = np.sum(residuals**2) / n | ||
if regularization == 'l1': | ||
penalty = l1_norm(beta1, beta2) | ||
elif regularization == 'l2': | ||
penalty = l2_norm_squared(beta1, beta2) | ||
return error_term + lam * penalty | ||
|
||
# Compute the Minima for each plot | ||
minima = {} | ||
regularizations = ['l1', 'l2'] | ||
lambdas = [0, 0.5, 5] | ||
for reg in regularizations: | ||
for lam in lambdas: | ||
result = minimize(updated_objective, [0, 0], args=(x1, x2, y, lam, reg), method='L-BFGS-B') | ||
minima[(reg, lam)] = result.x | ||
|
||
# Parameter Space for Beta1 and Beta2 | ||
beta1_range = np.linspace(-10, 10, 100) | ||
beta2_range = np.linspace(-10, 10, 100) | ||
beta1_grid, beta2_grid = np.meshgrid(beta1_range, beta2_range) | ||
|
||
# Plotting | ||
fig, axes = plt.subplots(2, 3, subplot_kw={"projection": "3d", "facecolor": "white"}, figsize=(18, 12)) | ||
for i, reg in enumerate(regularizations): | ||
for j, lam in enumerate(lambdas): | ||
objective_values = np.array([updated_objective([b1, b2], x1, x2, y, lam, reg) | ||
for b1, b2 in zip(np.ravel(beta1_grid), np.ravel(beta2_grid))]) | ||
objective_values = objective_values.reshape(beta1_grid.shape) | ||
|
||
ax = axes[i, j] | ||
ax.plot_surface(beta1_grid, beta2_grid, objective_values, cmap='viridis') | ||
ax.set_title(f'Regularization: {reg.upper()}, Lambda: {lam}', fontsize=14) # Increased font size | ||
ax.set_xlabel('Theta1', fontsize=10) # Increased font size | ||
ax.set_ylabel('Theta2', fontsize=10) # Increased font size | ||
ax.set_zlabel('Objective', fontsize=10) # Increased font size | ||
ax.w_xaxis.pane.fill = False | ||
ax.w_yaxis.pane.fill = False | ||
ax.w_zaxis.pane.fill = False | ||
ax.w_xaxis.pane.set_edgecolor('white') | ||
ax.w_yaxis.pane.set_edgecolor('white') | ||
ax.w_zaxis.pane.set_edgecolor('white') | ||
|
||
# Add the minima as a red dot | ||
min_beta1, min_beta2 = minima[(reg, lam)] | ||
min_val = updated_objective([min_beta1, min_beta2], x1, x2, y, lam, reg) | ||
ax.scatter(min_beta1, min_beta2, min_val, color='red', s=50) | ||
|
||
plt.tight_layout() | ||
plt.subplots_adjust(wspace=0.1, hspace=0.1) # Adjust spacing between the plots if needed | ||
plt.savefig('..figure/reg_surfaces.png', bbox_inches='tight', pad_inches=0, facecolor='white') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters