diff --git a/slides/information-theory/slides-info-kl-ml.tex b/slides/information-theory/slides-info-kl-ml.tex index 0e8e7151..7421d76b 100644 --- a/slides/information-theory/slides-info-kl-ml.tex +++ b/slides/information-theory/slides-info-kl-ml.tex @@ -31,7 +31,7 @@ \item \textbf{Probabilistic model fitting}\\ Assume our learner is probabilistic, i.e., we model $p(y| \mathbf{x})$ for example (for example, ridge regression, logistic regression, ...). -\includegraphics[width=0.4\linewidth]{slides/information-theory/figure_man/kl_ml_prob_fit.png} +\includegraphics[width=0.4\linewidth]{figure_man/kl_ml_prob_fit.png} We want to minimize the difference between $p(y \vert \mathbf{x})$ and the conditional data generating process $\mathbb{P}_{y\vert\mathbf{x}}$ based on the data stemming from $\mathbb{P}_{y, \mathbf{x}}.$ @@ -122,7 +122,7 @@ \end{itemize} \framebreak -\includegraphics[width=0.6\linewidth]{slides/information-theory/figure_man/kl_ml_fkl_rkl.png} \\ +\includegraphics[width=0.6\linewidth]{figure_man/kl_ml_fkl_rkl.png} \\ The asymmetry of the KL has the following implications \begin{itemize} \item The forward KL $D_{KL}(p\|q_{\bm{\phi}}) = \E_{\xv \sim p} \log\left(\frac{p(\xv)}{q_{\bm{\phi}}(\xv)}\right)$ is mass-covering since $p(\xv)\log\left(\frac{p(\xv)}{q_{\bm{\phi}}(\xv)}\right) \approx 0$ if $p(\xv) \approx 0$ (as long as both distribution do not extremely differ) diff --git a/slides/regularization/slides-regu-softthresholding-lasso-deepdive.tex b/slides/regularization/slides-regu-softthresholding-lasso-deepdive.tex index 5be7817d..b8bed098 100644 --- a/slides/regularization/slides-regu-softthresholding-lasso-deepdive.tex +++ b/slides/regularization/slides-regu-softthresholding-lasso-deepdive.tex @@ -3,7 +3,7 @@ \input{../../latex-math/basic-math} \input{../../latex-math/basic-ml} -\newcommand{\titlefigure}{slides/regularization/figure/th_l1_pos.pdf} +\newcommand{\titlefigure}{figure/th_l1_pos.pdf} \newcommand{\learninggoals}{ \item Understand the relationship between soft-thresholding and L1 regularization } @@ -54,7 +54,7 @@ 1) $\hat{\theta}_{\text{Lasso},j} > 0:$ \\ \lz \begin{minipage}{0.4\textwidth} - \includegraphics[width=5cm]{slides/regularization/figure/th_l1_pos.pdf} + \includegraphics[width=5cm]{figure/th_l1_pos.pdf} \end{minipage} \hfill \begin{minipage}{0.49\textwidth} @@ -70,7 +70,7 @@ 2) $\hat{\theta}_{\text{Lasso},j} < 0:$ \\ \lz \begin{minipage}{0.4\textwidth} - \includegraphics[width=5cm]{slides/regularization/figure/th_l1_neg.pdf} + \includegraphics[width=5cm]{figure/th_l1_neg.pdf} \end{minipage} \hfill \begin{minipage}{0.49\textwidth} @@ -85,7 +85,7 @@ \begin{minipage}{0.4\textwidth} - \includegraphics[width=5cm]{slides/regularization/figure/th_l1_zero.pdf} + \includegraphics[width=5cm]{figure/th_l1_zero.pdf} \end{minipage} \hfill \begin{minipage}{0.49\textwidth}