Skip to content

Commit

Permalink
update ic inf theory 1
Browse files Browse the repository at this point in the history
  • Loading branch information
ludwigbothmann committed Nov 5, 2024
1 parent c1133bd commit 7fc0c74
Show file tree
Hide file tree
Showing 2 changed files with 6 additions and 6 deletions.
Binary file modified exercises-pdf/ic_information_theory_1.pdf
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -1,17 +1,17 @@
Consider a double-exponential distributed random variable $X$ with unknown parameters $\mu_0 \in \R$ and $\sigma_0 > 0$. In other words: $X\sim\text{DE}(\mu_0,\sigma_0)$ with the following density function:
Consider a laplace-distributed random variable $X$ with unknown parameters $\mu_0 \in \R$ and $\sigma_0 > 0$. In other words: $X\sim\text{LP}(\mu_0,\sigma_0)$ with the following density function:

$$ g(x) = \frac{1}{2\sigma_0}\,\exp\left(-\frac{|x-\mu_0|}{\sigma_0}\right) $$

Unfortunately, the model is misspecified and $X$ is assumed to be normally distributed with a set of parameters $\theta = ( \mu, \sigma^2)$, meaning that $X \sim \normal (\mu,\sigma^2) $

$$ f_\theta(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{1}{2} \left( \frac{x-\mu}{\sigma} \right)^2 \right) $$

\begin{enumerate}
\item
Calculate the set of parameters $\theta$ that minimizes the Kullback-Leibler Divergence $D_{KL}(g \| f_\theta)$
%\begin{enumerate}
% \item
Calculate the set of parameters $\theta$ that minimizes the Kullback-Leibler Divergence $D_{KL}(g \| f_\theta)$.


\emph{Hint}: Use the fact that for $X \sim \text{DE}(\mu_0,\sigma_0)$, the following properties apply: $\E(X )=\mu_0$ and $\var(X)=2 \sigma_0^2$.
\emph{Hint}: Use the fact that for $X \sim \text{LP}(\mu_0,\sigma_0)$, the following properties apply: $\E(X )=\mu_0$ and $\var(X)=2 \sigma_0^2$.

\end{enumerate}
%\end{enumerate}

0 comments on commit 7fc0c74

Please sign in to comment.