diff --git a/slides-pdf/slides-mc-softmax-regression.pdf b/slides-pdf/slides-mc-softmax-regression.pdf index 94871389..3924bd77 100644 Binary files a/slides-pdf/slides-mc-softmax-regression.pdf and b/slides-pdf/slides-mc-softmax-regression.pdf differ diff --git a/slides/multiclass/slides-mc-softmax-regression.tex b/slides/multiclass/slides-mc-softmax-regression.tex index 4649b5ac..fd6f485b 100644 --- a/slides/multiclass/slides-mc-softmax-regression.tex +++ b/slides/multiclass/slides-mc-softmax-regression.tex @@ -52,7 +52,7 @@ f_k(\xv) = \thetav_k^\top \xv, \quad k = 1, 2, ..., g, $$ each indicating the confidence in class $k$. - \item The $g$ score functions are transformed into $g$ probability functions by the \textbf{softmax} function $s:\R^g \to \R^g$ + \item The $g$ score functions are transformed into $g$ probability functions by the \textbf{softmax} function $s:\R^g \to [0,1]^g$ $$ \pi_k(\xv) = s(\fx)_k = \frac{\exp(\thetav_k^\top \xv)}{\sum_{j = 1}^g \exp(\thetav_j^\top \xv) }\,,