-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHousingMarketAnalysis_TS_DL.Rmd
559 lines (443 loc) · 17.6 KB
/
HousingMarketAnalysis_TS_DL.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
---
title: "Housing Market Analysis - Time Series & Deep Learning"
author: "Sam Vuong, Raymond (shanhua) Huang, Carmon Ho, Kyle Murphy"
date: "July 2020"
output:
html_document: default
pdf_document: default
word_document: default
---
### Abstract
The goal of this project is to analyze the trend of Melbourne Australia’s housing market. With the housing market on the rise, it began to see a trend of “cool off”. The success of this project is to determine the cause/s of the housing market that has “cool off”.
Our application on ShinyApps can be accessed at: https://skvuong.shinyapps.io/project/
Our application code can be found in GitHub at: https://github.com/skvuong/housingMarketAnalysis
## Introduction
Every family needs to have a home to be living in, and not everyone can afford to buy a home. There are a lot of variables for a family to be able to secure the home they want and one of the major factors is price. With this project we will examine Melbourne’s Housing Market on determining factors on why prices have seen decline in January 2016.
We will employ time series technique to analyze when the housing market has declined. We will also use the Neural Network Deep Learning technique to model and predict the house price based on other factors.
### Dataset
We are using the “Melbourne Housing Market” from Kaggle website.
The dataset has 34,857 rows and 21 columns.
The dataset can be found at: https://www.kaggle.com/anthonypino/melbourne-housing-market.
## Install and load the required packages
The following R libraries are used by our application:
```{r, warning=FALSE, error=FALSE, message=FALSE}
# Install tensorflow / keras packages
# Note those will take at least half hours
#install.packages('devtools')
library(devtools)
devtools::install_github("rstudio/tensorflow")
devtools::install_github("rstudio/keras")
#tensorflow::install_tensorflow()
#tensorflow::tf_config()
if(!require(astsa))
install.packages("astsa")
if(!require(dplyr))
install.packages("dplyr")
if(!require(fastDummies))
install.packages("fastDummies")
if(!require(forecast))
install.packages("forecast")
if(!require(corrplot))
install.packages("corrplot")
if(!require(ggplot2))
install.packages("ggplot2")
if(!require(ggthemes))
install.packages("ggthemes")
if(!require(keras))
install.packages("keras")
if(!require(magrittr))
install.packages("magrittr")
if(!require(mlbench))
install.packages("mlbench")
if(!require(neuralnet))
install.packages("neuralnet")
if(!require(RColorBrewer))
install.packages("RColorBrewer")
if(!require(sarima))
install.packages("sarima")
if(!require(tidyr))
install.packages("tidyr")
if(!require(tseries))
install.packages("tseries")
if(!require(xts))
install.packages("xts")
library(astsa)
library(dplyr)
library(fastDummies)
library(forecast)
library(corrplot)
library(ggplot2)
library(ggthemes)
library(keras)
library(magrittr)
library(mlbench)
library(neuralnet)
library(RColorBrewer)
library(sarima)
library(tidyr)
library(tseries)
library(xts)
```
## Loading Data
```{r, warning=FALSE, error=FALSE, message=FALSE}
housing_data <- read.csv("Melbourne_housing_FULL.csv", header=TRUE)
```
## Data Exploration and Visualization
```{r, warning=FALSE, error=FALSE, message=FALSE}
dim(housing_data)
colnames(housing_data)
str(housing_data)
#Number of Unique Suburbs
length(unique(housing_data$Suburb))
#Number of Unique Regions
length(unique(housing_data$Regionname))
#List of Home Types
unique(housing_data$Type)
#1. Top 10 Suburbs By Count of Homes
#Calculate count of homes per suburb
top10 <- housing_data %>% group_by(Suburb) %>%
summarise(Number = n()) %>% arrange(desc(Number)) %>%
head(10)
#Plot
ggplot(top10, aes(reorder(Suburb, Number), Number, fill = Suburb))+
geom_bar(stat = "identity")+
theme(legend.position = "none")+
labs(x = "Suburb", y = "Count of Homes",
title = "Top 10 Suburbs by Count of Homes")+
coord_flip()
#2. Top 10 Suburbs By Average Price
#Create new dataframe - price and suburb columns
SuburbandPrice <- housing_data[c("Suburb","Price")]
#Calculate average price per suburb
top10avgprice <- SuburbandPrice %>% group_by(Suburb) %>%
summarise(Average = sum(Price)/n()) %>%
arrange(desc(Average)) %>% head(10)
#Plot
ggplot(top10avgprice, aes(reorder(Suburb, Average), Average, fill = Suburb))+
geom_bar(stat = "identity")+
theme(legend.position = "none")+
labs(x = "Suburb", y = "Average Price Per Home",
title = "Top 10 Suburbs by Average Price of Homes")
#3. Price Distribution of Homes
#Create new dataframe
DateandPrice <- housing_data[c("Suburb","Price","Date")] %>% na.omit()
#Plot
ggplot(DateandPrice, aes(Price))+
geom_histogram(binwidth = 250000,color = "black", fill = "blue")+
scale_x_continuous(breaks = c(1000000,2000000,3000000,4000000),
labels = c("$1m","$2m","$3m","$4m"))+
ggtitle("Melbourne House Price Distribution")
#4. Distance from CBD Distribution
housing_data$Distance<- as.numeric(housing_data$Distance)
hist(housing_data$Distance, breaks = 40, xlim = c(0,50), ylim = c(0,3400),
xlab = "Distance", col = "Blue", main = "Count of Distances from CBD", las =1)
#5. No. of Bedrooms Distribution
hist(housing_data$Bedroom2, breaks = 40, xlim = c(0,10), ylim = c(0,12000),
xlab = "No. of Bedrooms", col = "grey", main = "Count of No. of Bedrooms", las =1)
#6. No. of Bathroom Distribution
hist(housing_data$Bathroom, breaks = 40, xlim = c(0,10), ylim = c(0,4000),
xlab = "No. of Bathrooms", col = "Purple", main = "Count of No. of Bathrooms", las =1)
#7. No. of Car Lots Distribution
hist(housing_data$Car, breaks = 40, xlim = c(0,10), ylim = c(0,4000),
xlab = "No. of Carslots", col = "Green", main = "Count of No. of Carslots", las =1)
#8. House Type Distribution
#Create New Dataframe
housedf2 <- housing_data %>%
select(Price, Regionname,Type,Date)
#Plot
ggplot(housedf2, aes(Type, Price)) +
geom_boxplot(outlier.colour = "blue") +
scale_x_discrete(labels = c('Houses','Townhouses','Units')) +
scale_y_continuous(breaks=seq(0,10000000,1250000)) +
xlab("Home Type") +
ylab("Price") +
ggtitle("Home Type Price Distribution")
#9. Price Distribution of Regions
#Create New Dataframe
housedf2 <- housing_data %>%
select(Price, Regionname,Type,Date)
#Plot
ggplot(housedf2, aes(Regionname, Price)) +
geom_boxplot(outlier.colour = "blue") +
scale_y_continuous(breaks=seq(0,10000000,1250000)) +
xlab("Region") +
ylab("Price") +
ggtitle("Price Distribution of Regions")
#10a. Correlation Matrix - All Homes
housedf3 <- housing_data %>%
select(Rooms,Bedroom2,Bathroom,Distance,Car,Landsize,
BuildingArea,YearBuilt,Propertycount,Price)
housedf3$Distance<- as.numeric(housedf3$Distance)
housedf3$Propertycount<- as.numeric(housedf3$Propertycount)
housedf3 <- na.omit(housedf3)
corrplot(cor(as.matrix(housedf3)), method = "pie", type="lower")
#10b. Correlation Matrix - House Type Homes
housedfhome <- housing_data %>%filter(Type == "h") %>%
select(Rooms,Bedroom2,Bathroom,Distance,Car,Landsize,
BuildingArea,YearBuilt,Propertycount,Price)
housedfhome$Distance<- as.numeric(housedfhome$Distance)
housedfhome$Propertycount<- as.numeric(housedfhome$Propertycount)
housedfhome <- na.omit(housedfhome )
corrplot(cor(as.matrix(housedfhome)), method = "pie", type="lower")
#10c. Correlation Matrix - Townhouse Type Homes
housedfhome <- housing_data %>%filter(Type == "t") %>%
select(Rooms,Bedroom2,Bathroom,Distance,Car,Landsize,
BuildingArea,YearBuilt,Propertycount,Price)
housedfhome$Distance<- as.numeric(housedfhome$Distance)
housedfhome$Propertycount<- as.numeric(housedfhome$Propertycount)
housedfhome <- na.omit(housedfhome )
corrplot(cor(as.matrix(housedfhome)), method = "pie", type="lower")
#10d. Correlation Matrix - Unit Type Homes
housedfhome <- housing_data %>%filter(Type == "u") %>%
select(Rooms,Bedroom2,Bathroom,Distance,Car,Landsize,
BuildingArea,YearBuilt,Propertycount,Price)
housedfhome$Distance<- as.numeric(housedfhome$Distance)
housedfhome$Propertycount<- as.numeric(housedfhome$Propertycount)
housedfhome <- na.omit(housedfhome )
corrplot(cor(as.matrix(housedfhome)), method = "pie", type="lower")
```
## Time Series
```{r, warning=FALSE, error=FALSE, message=FALSE}
datam<-housing_data
#change data type as.numeric(), as.character(), as.vector(), as.matrix(), as.data.frame)
#data pretreatment
dataT<-select(datam,Price,Date,Type)
dataT$Price<-as.numeric(dataT$Price)
dataT<-na.omit(dataT)
dataT1<-dataT %>% group_by(Date,Type) %>% summarise(Mean_sales=mean(Price))
#dataT1<-aggregate(dataT&Price,by=list(dataT&Date,dataT&Type),FUN=mean)
#conditional select mf[ mf$a == 16, ]
dataT2 <- subset(dataT1, Type == "u")
#View(dataT2)
dataT3<-select(dataT2,Date,Mean_sales)
#change date type
#dataT3$Date<-as.POSIXct(dataT3$Date,format = "%d/%m/%Y")
dataT3$Date<-as.Date(dataT3$Date, format = "%d/%m/%Y")
#View(dataT3)
dataT4<-xts(dataT3$Mean_sales, as.Date(dataT3$Date, format="%d/%m/%Y"))
#View(dataT4)
#If too many outliers, it could be changed to log format but in this case, it is not needed
#LAP<-log(dataT4)
AP<-dataT4
plot(dataT4)
#Decomposition of additive time series
#decomp<-decompose(AP)
#plot(decomp$figure,type='b',xlab='Month',ylab='Seasonality Index',col='blue',las=2)
#plot(decomp)
```
## Forecast
```{r, warning=FALSE, error=FALSE, message=FALSE}
#ARIMA- autoregressive integrated moving average
AP<-dataT4
model<-auto.arima(AP)
attributes(model)
model$coef
#ACF and PACF plots
#ACF plots display correlation between a series and its lag
acf(model$residuals,main='Correlogram')
#PACF plots display correlation between a series and its lag that explained by previous lag
pacf(model$residuals,main='Partial Correlogram')
#ljung-box test
Box.test(model$residuals, lag=20,type='Ljung-Box')
#residual plot
hist(model$residuals,col='red',xlab='Error',main='Histogram of Residuals',freq=FALSE)
lines(density(model$residuals))
#forecasr
f<-forecast(model,12)
autoplot(f)
accuracy(f)
#Forecasts using Exponential Smoothing
skirtsseriesforecasts <- HoltWinters(AP, beta=FALSE,gamma=FALSE)
skirtsseriesforecasts$SSE
skirtsseriesforecasts2 <- forecast:::forecast.HoltWinters(skirtsseriesforecasts, h=12)
autoplot(skirtsseriesforecasts2)
accuracy(skirtsseriesforecasts2)
#Seasonal analysis
#seasonm<-sarima(AP, 1,0,0,0,1,1,12)
#sarima.for(AP, 24, 0,1,1,0,1,1,12)
#Time series parameter
plot(AP, type="b")
#diff12 = diff(AP,12)
#acf2(diff12, 48)
#final
models = arima(AP, order = c(0,1,1), seasonal = list(order = c(0,1,1), period = 12))
predict(models, n.ahead=24)
autoplot(forecast(models, 12))
accuracy(models)
#Extra code not related
#sarima(AP, 0,0,1,0,0,1,4)
#sarima(AP, 1,0,0,0,0,1,4)
#sarima(AP, 0,0,0,0,0,1,4)
#sarima(AP, 1,0,0,0,0,2,4)
#trunacate those under 0
themodel = arima(AP, order = c(1,0,0), seasonal = list(order = c(0,1,1), period = 12))
themodel
predict(themodel, n.ahead=12)
autoplot(forecast(themodel, n.ahead=12))
#monthly means to make the case that the data are seasonal.
flowm = matrix(AP, byrow=TRUE)
col.means=apply(flowm,2,mean)
plot(col.means,type="b", main="Monthly Means Plot for Flow", xlab="Month", ylab="Mean")
#seasonal analysis
models<-auto.arima(AP,seasonal=TRUE)
s<-forecast(models,12)
library(ggplot2)
autoplot(s)
accuracy(s)
#help(sarima)
models<-Arima(AP,order=c(0,1,2),seasonal=c(0,1,1))
s<-forecast(models,12)
library(ggplot2)
autoplot(s)
accuracy(s)
#fit<-stl(AP,s.wnidow="period")
#plot(fit)
#autoplot(s)
#accuracy(s)
```
## DL Modeling
#### Data Cleanup
```{r, warning=FALSE, error=FALSE, message=FALSE}
# Check for missing Price values and outliers
# Check for missing Price values
sum(is.na(housing_data$Price))
# Check for outliers
housing_data %>% filter(Price < 200000) %>% nrow()
housing_data %>% filter(Price < 300000) %>% nrow()
housing_data %>% filter(Price < 400000) %>% nrow()
housing_data %>% filter(Price > 3000000) %>% nrow()
housing_data %>% filter(Price > 4000000) %>% nrow()
housing_data %>% filter(Price > 5000000) %>% nrow()
housing_data %>% filter(Price > 6000000) %>% nrow()
# Since our target variable is Price, we drop observations without Price value.
# Start with full dataset
data_clean <- housing_data
dim(data_clean)
# Keep only records with non-null Price values
data_clean <- drop_na(data_clean, Price)
dim(data_clean)
# Keep only records with Price >= 300,000
data_clean <- data_clean %>% filter(Price >= 300000)
dim(data_clean)
# Keep only records with Price <= 5,000,000
data_clean <- data_clean %>% filter(Price <= 5000000)
dim(data_clean)
```
### Data Preparation
```{r, warning=FALSE, error=FALSE, message=FALSE}
# Divide the data into 10 buckets of equal sizes and assign Price Range value
num_buckets <- 10
data_clean$PriceRange <- as.numeric( cut_number( data_clean$Price, num_buckets) )
# Check the summary for the buckets
data_clean %>%
group_by(PriceRange) %>%
summarise(Count = n(), min = min(Price), max = max(Price), mean = mean(Price) )
str(data_clean)
```
### Features Selection
The following attributes were identified as having an impact on
(are correlated to) the house price by our Data Analysis in section above.
(Type, Rooms, Bedroom2, Bathroom, Car, Landsize, YearBuilt, BuildingArea, Distance)
```{r, warning=FALSE, error=FALSE, message=FALSE}
# Data Cleanup for Independent attributes
data_numeric <- data_clean %>%
select(Rooms, Bedroom2, Bathroom, Car, Landsize, YearBuilt, BuildingArea, Distance, Price, PriceRange)
# Convert non-numeric columns with numeric data to numeric.
data_numeric$Distance <- as.numeric(data_numeric$Distance)
str(data_numeric$Distance)
# Fill nulls value in numeric columns with column mean values
col_means <- lapply(data_numeric, mean, na.rm = TRUE)
datac_na <- replace_na(data_numeric, col_means)
# Double-check null value in numeric columns
summarise_all(datac_na, funs( sum(is.na(.)) ) )
# Add categorical attribute (Type) to column selection
datac <- datac_na
datac$Type <- as.vector(data_clean$Type)
# Check distribution of categorical attribute (Type).
datac %>%
group_by(Type) %>%
summarise(Count = n(), min = min(Price), max = max(Price), mean = mean(Price) )
# Create dummies for categorical attribute (Type).
results <- fastDummies::dummy_cols(datac,select_columns='Type')
knitr::kable(results)
dataf <- results %>% select(Rooms, Bedroom2, Bathroom, Car, Landsize, YearBuilt,
BuildingArea, Distance, Type_h,Type_t,Type_u, PriceRange)
dataf %<>% mutate_if(is.factor, as.numeric)
# Double-check null value in numeric columns
summarise_all(dataf, funs( sum(is.na(.)) ) )
```
### Model data
```{r, warning=FALSE, error=FALSE, message=FALSE}
model_data <- as.matrix(dataf)
dimnames(model_data) <- NULL
# Use 80/20 Train/Test Split
set.seed(123)
ind<-sample(2, nrow(model_data), replace=T, prob=c(0.8,0.2) )
train_set <- model_data[ind==1,1:8]
test_set <- model_data[ind==2,1:8]
train_target <- model_data[ind==1,9]
test_target <- model_data[ind==2,9]
#Normalization
mf <- colMeans(train_set)
sf <- apply(train_set, 2, sd)
train_set <- scale(train_set, center = mf, scale = sf)
test_set <- scale(test_set, center = mf, scale = sf)
#Categorization
train_target = train_target -1
train_target_cat = to_categorical(train_target, num_classes = num_buckets)
test_target = test_target -1
test_target_cat = to_categorical(test_target, num_classes = num_buckets)
```
### DL Model
Create a sequential model in Keras by stacking the layers sequentially.
- The model has 3 hidden layers.
- Keras builds an implicit input layer using the input_shape parameter.
- Last layer is the output layer.
```{r, warning=FALSE, error=FALSE, message=FALSE}
# Create a simple Neuralnet
nn <- neuralnet(PriceRange ~ Rooms+Bedroom2+Bathroom+Car+Landsize+YearBuilt+BuildingArea+Distance+Type_h+Type_t+Type_u,
data = dataf,
hidden = c(10,5),
linear.output = F,
lifesign = 'full',
rep=1)
plot(nn,
col.hidden = 'darkgreen',
col.hidden.synapse = 'darkgreen',
show.weights = F,
information = F,
fill = 'lightblue')
use_condaenv("r-tensorflow")
# Create a sequential model in Keras
model <- keras_model_sequential()
model %>%
layer_dense(units = 100, activation = 'relu', input_shape = c(8) ) %>%
layer_dense(units = 50, activation = 'relu') %>%
layer_dense(units = 20, activation = 'relu') %>%
layer_dense(units = ncol(train_target_cat) )
# Take a look at the model and the shapes of the layers:
model
# Define the loss and optimizer functions and the metric to optimize.
compile(model, loss = 'categorical_crossentropy',
optimizer = optimizer_rmsprop(), metrics = "accuracy")
# Fit (train) the model
model_hist <- fit(model, train_set, train_target_cat,
epochs=100, batch_size=32, validation_split=0.2)
# Plot fitting history
plot(model_hist)
```
### Evaluating the model
```{r, warning=FALSE, error=FALSE, message=FALSE}
# Using Testset data
evaluate(model, test_set, test_target_cat)
# Validate Model with unseen data
# Predict new cases
test_pred <- predict_classes(model, test_set)
pred_prob <- predict_proba(model, test_set)
# Confusion matrix
confusion_matrix = table(Predicted = test_pred, Actual = test_pred)
confusion_matrix
# Accuracy
accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)
accuracy
```