-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify.py
148 lines (136 loc) · 5.85 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import csv
import ast
import time
import pandas as pd
from sklearn import preprocessing
from orderedset import OrderedSet
from preprocess import haversine
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.pipeline import Pipeline
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score
from sklearn.feature_extraction.text import TfidfTransformer
import numpy as np
import sys
# Find minimum borders in dataset
def find_min_border(inputFile):
with open(inputFile, 'r') as inFile:
next(inFile)
inputReader = csv.reader(inFile, delimiter=';')
min_lon = float('inf')
min_lat = float('inf')
for row in inputReader:
timeseries = ast.literal_eval(row[2])
temp = min(timeseries, key=lambda x: float(x[1]))
if min_lon > float(temp[1]):
min_lon = float(temp[1])
temp = min(timeseries, key=lambda x: float(x[2]))
if min_lat > float(temp[2]):
min_lat = float(temp[2])
return min_lon, min_lat
def gridify(filename, (min_lon, min_lat), cellSide): #cellSide in km
with open(filename, 'r') as inFile, open(filename[:-4]+'_grid.csv', 'w') as outFile:
first = next(inFile)
inputReader = csv.reader(inFile, delimiter=';')
outputWriter = csv.writer(outFile, delimiter='!') # Changed delimiter
outputWriter.writerow(first.rstrip().split(';'))
for row in inputReader:
tripID = row[0]
if len(row) == 3:
journeyPatternID = row[1]
timeseries = ast.literal_eval(row[2])
else: #elif len(row) == 2
timeseries = ast.literal_eval(row[1])
cellsList = []
for point in timeseries:
dy = haversine(float(point[1]), min_lat, min_lon, min_lat)
dx = haversine(min_lon, float(point[2]), min_lon, min_lat)
cell = 'C'+str(int(dx // cellSide))+','+str(int(dy // cellSide))
if len(cellsList) == 0 or cellsList[-1] != cell:
cellsList.append(cell)
if len(row) == 3:
outputWriter.writerow([tripID, journeyPatternID, ';'.join([x for x in cellsList])])
else: #elif len(row) == 2
outputWriter.writerow([tripID, ';'.join([x for x in cellsList])])
def cross_validate(classifier):
df=pd.read_csv('datasets/tripsClean_grid_v2.csv',sep='!')
le = preprocessing.LabelEncoder()
le.fit(df['JourneyPatternID'])
Y_train=le.transform(df['JourneyPatternID'])
X_train=df['Trajectory']
vectorizer = HashingVectorizer(ngram_range=(1,2), tokenizer=lambda x: x.split(';'))
pipeline = Pipeline([
('vect', vectorizer),
('classifier', classifier)
])
scores = cross_val_score(pipeline, X_train, Y_train, cv=10)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
def classify(classifier):
df=pd.read_csv('datasets/tripsClean_grid.csv',sep='!')
le = preprocessing.LabelEncoder()
le.fit(df['JourneyPatternID'])
Y_train=le.transform(df['JourneyPatternID'])
X_train=df['Trajectory']
vectorizer = HashingVectorizer(ngram_range=(1,2), tokenizer=lambda x: x.split(';'))
pipeline = Pipeline([
('vect', vectorizer),
('classifier', classifier)
])
pipeline.fit(X_train, Y_train)
df=pd.read_csv('datasets/test_set_grid.csv',sep='!')
X_test = df['Trajectory']
predicted_labels = le.inverse_transform(pipeline.predict(X_test))
with open('datasets/testSet_JourneyPatternIDs.csv', 'w') as outFile:
outputWriter = csv.writer(outFile, delimiter='\t')
outputWriter.writerow(['Test_Trip_ID', 'Predicted_JourneyPatternID'])
trip_id = 0
for label in predicted_labels:
outputWriter.writerow([trip_id, label])
trip_id += 1
def regridify(filename):
with open(filename, 'r') as inFile, open(filename[:-4]+'_v2.csv', 'w') as outFile:
first = next(inFile)
inputReader = csv.reader(inFile, delimiter='!')
outputWriter = csv.writer(outFile, delimiter='!')
outputWriter.writerow(first.rstrip().split('!'))
for row in inputReader:
tripID = row[0]
journeyPatternID = row[1]
trajectory = row[2]
cells = trajectory.split(';')
row = [tripID, journeyPatternID]
newCells = ''
for i in range(len(cells)-1):
c1 = cells[i]
c2 = cells[i+1]
x1 = c1.split(',')[0][1:]
y1 = c1.split(',')[1]
x2 = c2.split(',')[0][1:]
y2 = c2.split(',')[1]
newCell = c1;
if y2 > y1:
newCell += 'N'
elif y2 < y1:
newCell += 'S'
if x2 > x1:
newCell += 'E'
elif x2 < x1:
newCell += 'W'
newCells += newCell+';'
newCells+=cells[-1]
outputWriter.writerow(row+[newCells])
# min_lon, min_lat = (-6.61505, 53.07045)
min_lon, min_lat = find_min_border('datasets/tripsClean.csv')
gridify('datasets/tripsClean.csv',(min_lon, min_lat), 0.2)
gridify('datasets/test_set.csv',(min_lon, min_lat), 0.2)
# regridify('datasets/tripsClean_grid.csv')
# regridify('datasets/test_set_grid.csv')
classify(classifier = KNeighborsClassifier(n_neighbors=1))
# classify(classifier = LogisticRegression())
# classify(classifier = RandomForestClassifier(n_estimators = 10, random_state = 1, n_jobs=-1))