-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkafkatop.py
executable file
·681 lines (570 loc) · 28.6 KB
/
kafkatop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
#!/usr/bin/env python
# Author: spiros ioannou 2023
# Calculate kafka consumer lag statistics to estimate system health
#
import sys
import os
import signal
import pprint
import json
import logging
import statistics
import random
import re
import time
import datetime
import argparse
import humanize
from confluent_kafka import (KafkaException, ConsumerGroupTopicPartitions,
TopicPartition, ConsumerGroupState, TopicCollection,
IsolationLevel)
from confluent_kafka.admin import (AdminClient, NewTopic, NewPartitions, ConfigResource,
ConfigEntry, ConfigSource, AclBinding,
AclBindingFilter, ResourceType, ResourcePatternType,
AclOperation, AclPermissionType, AlterConfigOpType,
ScramMechanism, ScramCredentialInfo,
UserScramCredentialUpsertion, UserScramCredentialDeletion,
OffsetSpec)
from rich.console import Console
from rich.table import Table
from rich.live import Live
from rich import box
VERSION='1.12'
# a: kafka AdminClient instance
def describe_consumer_groups(a, group_ids):
"""
Return consumer group assigned topics and partitions
consumer_group_topics{'consumer_group_id':{'topic':[partitions,..]}}
"""
futureMap = a.describe_consumer_groups(group_ids, include_authorized_operations=False, request_timeout=10)
consumer_group_topics={}
for group_id, future in futureMap.items():
try:
g = future.result()
#print("Group Id: {}".format(g.group_id))
if g.group_id not in consumer_group_topics:
consumer_group_topics[g.group_id]={}
for member in g.members:
if member.assignment:
#print(" Assignments :")
for toppar in member.assignment.topic_partitions:
#print(" {} [{}]".format(toppar.topic, toppar.partition))
if toppar.topic not in consumer_group_topics[g.group_id]:
consumer_group_topics[g.group_id][toppar.topic]=[]
consumer_group_topics[g.group_id][toppar.topic].append(toppar.partition)
except KafkaException as e:
print("Error while describing group id '{}': {}".format(group_id, e))
except Exception:
raise
return consumer_group_topics
def list_topics(params, topic_name=None):
a=params['a']
if topic_name:
r = a.list_topics(topic=topic_name, timeout=30)
else:
r = a.list_topics(timeout=30)
return r
""" consumer_groups: {group_ids: [group1,group2,..],
properties:[ {group_id}={state:..., type:...}
a: AdminClient instance
"""
def list_consumer_groups(a, params):
consumer_groups={'ids':[], 'properties':{}}
# states: https://docs.confluent.io/platform/current/clients/confluent-kafka-python/html/index.html#confluent_kafka.ConsumerGroupState
s=[]
states = {ConsumerGroupState[state] for state in s}
future = a.list_consumer_groups(request_timeout=20, states=states)
try:
list_consumer_groups_result = future.result()
#print("{} consumer groups".format(len(list_consumer_groups_result.valid)))
for valid in list_consumer_groups_result.valid:
#print("GROUP id: {} is_simple: {} state: {}".format(valid.group_id, valid.is_simple_consumer_group, valid.state))
if params['kafka_group_filter_pattern']:
if not re.search(params['kafka_group_filter_pattern'], valid.group_id):
continue
if params['kafka_group_exclude_pattern'] and re.search(params['kafka_group_exclude_pattern'], valid.group_id):
continue
if params['kafka_show_empty_groups']==False and valid.state == ConsumerGroupState.EMPTY:
continue
consumer_groups['ids'].append(valid.group_id)
consumer_groups['properties'][valid.group_id] = {}
consumer_groups['properties'][valid.group_id]['state'] = valid.state
consumer_groups['properties'][valid.group_id]['is_simple'] = valid.is_simple_consumer_group
#print("{} errors".format(len(list_consumer_groups_result.errors)))
if len(consumer_groups['ids']) == 0:
print("No consumer groups found, try altering --group-exclude-pattern or --group-include-pattern, check defaults",file=sys.stderr)
sys.exit(1)
for error in list_consumer_groups_result.errors:
print(" error: {}".format(error))
except Exception:
raise
consumer_groups['ids'].sort()
return consumer_groups
def list_consumer_group_offsets(a, consumer_group_id):
"""
List consumer group partition offsets per topic for a consumer group
Returns
"<group>": {
"<topic>": {
"partno1": offset1,
"partno2": offset2,
"""
topic_partitions = None
groups = [ConsumerGroupTopicPartitions(consumer_group_id, topic_partitions)]
futureMap = a.list_consumer_group_offsets(groups)
group_offsets={}
for group_id, future in futureMap.items():
try:
response_offset_info = future.result()
#print("Group: " + response_offset_info.group_id)
for topic_partition in response_offset_info.topic_partitions:
if topic_partition.error:
print(" Error: " + topic_partition.error.str() + " occurred with " + topic_partition.topic + " [" + str(topic_partition.partition) + "]")
else:
if topic_partition.topic not in group_offsets:
group_offsets[topic_partition.topic]={}
group_offsets[topic_partition.topic][topic_partition.partition]=topic_partition.offset
#print(" " + topic_partition.topic + " [" + str(topic_partition.partition) + "]: " + str(topic_partition.offset))
except KafkaException as e:
print("Failed to list {}: {}".format(group_id, e))
except Exception:
raise
return group_offsets
def list_topic_offsets(a, topic, partitions):
topic_partition_offsets = {}
isolation_level=IsolationLevel.READ_COMMITTED
offset_spec = OffsetSpec.latest()
topic_offsets={}
for pnum in partitions:
topic_partition = TopicPartition(topic, pnum)
topic_partition_offsets[topic_partition] = offset_spec
futmap = a.list_offsets(topic_partition_offsets, isolation_level=isolation_level, request_timeout=30)
for partition, fut in futmap.items():
try:
result = fut.result()
#print("Topicname : {} Partition_Index : {} Offset : {} Timestamp : {}" .format(partition.topic, partition.partition, result.offset, result.timestamp))
if partition.topic not in topic_offsets:
topic_offsets[partition.topic]={}
topic_offsets[partition.topic][partition.partition] = result.offset
except KafkaException as e:
# e.g. "Failed to query partition leaders: No leaders found"
print("Topicname : {} Partition_Index : {} Error : {}" .format(partition.topic, partition.partition, e))
return topic_offsets
def calc_lag(a, params):
kd={} # Kafka data
# Consumer groups and offsets
kd['consumer_groups'] = list_consumer_groups(a, params)
# Topics assigned to each Consumer group
consumer_group_topics = describe_consumer_groups(a, kd['consumer_groups']['ids'])
kd['group_offsets']={}
for group in kd['consumer_groups']['ids']:
kd['group_offsets'][group] = list_consumer_group_offsets(a, group);
# 'consumer_roup': {'topic1': {partno: offset,..}, {topic2:
kd['group_offsets_ts']=time.time()
#
# Compile a list of topics our consumer groups are associated with
# topics_with_groups:
#"<topic_name>": {
# "groups": [
# "<group_id>"
# ],
# "partitions": [0,1,..]
kd['topics_with_groups']={}
for group in kd['group_offsets']:
if len(kd['group_offsets'][group].keys()):
#topic = list(kd['group_offsets'][group].keys())[0] #1st topic
for topic in list(kd['group_offsets'][group].keys()):
if topic not in kd['topics_with_groups']:
kd['topics_with_groups'][topic]={}
kd['topics_with_groups'][topic]['groups']=[]
partitions = list(kd['group_offsets'][group][topic].keys())
kd['topics_with_groups'][topic]['partitions'] = partitions
kd['topics_with_groups'][topic]['groups'].append(group)
else:
print(f'Warning: no offsets for group (never committed data): {group}') # can happen if never had data
continue
# latest offset of each topic of those consumed by consumer groups
# topic_offsets: '<topic_name>': {part_id: offset}
kd['topic_offsets']={}
for topic in kd['topics_with_groups']:
partitions = kd['topics_with_groups'][topic]['partitions']
topic_offsets_perpart = list_topic_offsets(a, topic, partitions)
kd['topic_offsets'].update(topic_offsets_perpart)
kd['topic_offsets_ts']=time.time()
#pprint.pprint(kd['topic_offsets'])
#pprint.pprint(kd['group_offsets'])
# Now we have topics + partition offsets in kd['topic_offsets'] and
# consumergroup+topic partition consumer offsets in kd['group_offsets'].
# We can now calculate lag statistics
kd['group_lags']={}
for group in kd['group_offsets']:
if not len(kd['group_offsets'][group].keys()):
continue
kd['group_lags'][group]={}
#topic = list(kd['group_offsets'][group].keys())[0] # first key, first topic, we only care for one
for topic in list(kd['group_offsets'][group].keys()):
tos = kd['topic_offsets'][topic] # topic latest offsets per partition: '{0: 1234, 1:1234 ..]'
gos = kd['group_offsets'][group][topic] # consumer group offsets per topic partition
lags=[] # offset lag per partition
part_lag = {}
for part in tos:
to = tos[part]
if part not in gos:
#print(f"Warning: partition {part} not part of ConsumerGroup {group} for topic {topic}, no data there?")
# Can happen if part never had data from last app start, ignore offset
continue
go = gos[part]
lag = to - go
part_lag[part]=lag
lags.append(lag)
#print(to,go,to-go)
kd['group_lags'][group][topic]={}
kd['group_lags'][group][topic]['partlags']=part_lag
kd['group_lags'][group][topic]['topic']=topic
kd['group_lags'][group][topic]['max'] = max(lags) if len(lags) else 0 # TODO handle empty data here
kd['group_lags'][group][topic]['sum'] = sum(lags) if len(lags) else 0
kd['group_lags'][group][topic]['mean'] = statistics.mean(lags) if len(lags) else 0
kd['group_lags'][group][topic]['median'] = statistics.median(lags) if len(lags) else 0
kd['group_lags'][group][topic]['min'] = min(lags) if len(lags) else 0
#if len(lags):
# print(f'Group: {group:<40}, topic:{topic:<20}, parts:{len(tos):5}, LAG mean: {statistics.mean(lags):10.1f}, median: {statistics.median(lags)}')
#else:
# print(f'Group: {group:<40}, topic:{topic:<20}, parts:{len(tos):5}, LAG mean: -, median: -')
return kd
# Calclate consumption rate
# Consumed 1021 evts in 5 seconds, 204 evts/second remaining: 0 h, 0 sec
def calc_rate(kd1, kd2):
rates={}
for g in kd1['group_offsets']:
rates[g]={}
events_consumption_rate=None
for t in kd1['group_offsets'][g]: # t: topic. Probably only one topic in consumergroup
#print(f'Topic:{t}, group:{g}')
if g not in kd2['group_offsets'] or g not in kd1['group_offsets']:
print(f"WARNING: group {g} disappeared, skipping")
continue # group disappeared
po1 = kd1['group_offsets'][g][t] # part offsets
po2 = kd2['group_offsets'][g][t] # part offsets
po1_sum = sum(po1.values())
po2_sum = sum(po2.values())
events_consumed = po2_sum - po1_sum
time_delta = kd2['group_offsets_ts'] - kd1['group_offsets_ts']
events_consumption_rate = round(events_consumed/time_delta,3) # messages per second
if t not in kd2['topic_offsets']:
print(f"WARNING: Topic {t} not found in group data {g}: not supported multiple topics per consumer group, skipping")
continue
events_arrived = sum(kd2['topic_offsets'][t].values()) - sum(kd1['topic_offsets'][t].values()) # Diff of sum of topic offsets on all partitions
events_arrival_rate = round(events_arrived/time_delta,3) # messages per second
if events_consumption_rate > 0:
remaining_sec = int(kd2['group_lags'][g][t]['sum']) / events_consumption_rate
rem_hms = str(datetime.timedelta(seconds=round(remaining_sec)))
else:
remaining_sec = -1
rem_hms="-"
#print(f"{g:45} consumed {events_consumed:8} evts in {time_delta:3.1f}s, {events_consumption_rate:7.1f} evts/sec, remaining: {rem_hms:8}")
if events_consumption_rate != None:
rates[g][t]={'events_consumed': events_consumed, 'time_delta':time_delta, 'events_consumption_rate': events_consumption_rate,
'events_arrival_rate': events_arrival_rate, 'remaining_sec':remaining_sec, 'rem_hms':rem_hms}
return rates
def lag_show_text(params):
a = params['a']
kd = calc_lag(a, params)
for g in kd['group_lags']:
state = kd['consumer_groups']['properties'][g]['state']
for t in kd['group_lags'][g]:
parts_total = topic_nparts(params, t)
print(f"Group: {g:<45}, topic: {t:20}, partitions:{len(kd['group_lags'][g][t]['partlags'].keys()):5}/{parts_total:5}, State: {state:30}, LAG min: {kd['group_lags'][g][t]['min']:10.1f}, max: {kd['group_lags'][g][t]['max']:10.1f}, median: {kd['group_lags'][g][t]['median']}")
if params['kafka_poll_iterations'] == 0:
sys.exit(0)
time.sleep(params['kafka_poll_period'])
kd1 = kd
iteration=0
while True:
print("")
iteration += 1
kd2 = calc_lag(a, params)
rates = calc_rate(kd1, kd2)
kd1 = kd2
for g in rates:
for t in rates[g]:
if 'events_consumed' not in rates[g][t]:
#print(g,':no stats')
continue
print(f"{g:45} consumed {rates[g][t]['events_consumed']:8} evts in {rates[g][t]['time_delta']:3.1f}s,"
f"{rates[g][t]['events_consumption_rate']:10.1f} cons evts/sec,"
f"{rates[g][t]['events_arrival_rate']:10.1f} new evts/sec,"
f" remaining: {rates[g][t]['rem_hms']:8}")
if iteration==params['kafka_poll_iterations'] and params['kafka_poll_iterations']>0:
sys.exit(0)
time.sleep(params['kafka_poll_period'])
# Evaluate health of consumption stats per topic
# Input:
# lag: lag sum of partition
# group: group_id (name)
# rate dict of group
#
# Returns: sc (status), st (status text) dicts with keys: eta, lag, rate
#
def lag_health(group, lag, rate):
sc={} # color status
st={} # text status
rs = rate['remaining_sec']
if rs < 60:
sc['eta']='[bold green]'
st['eta']='OK'
elif rs < 120:
sc['eta']='[bold yellow]'
st['eta']={'status': 'OK', 'reason':'ETA > 1m'}
elif rs < 600:
sc['eta']='[bold yellow]'
st['eta']={'status': 'WARNING', 'reason':'ETA > 2m'}
elif rs < 7200:
sc['eta']='[bold magenta]'
st['eta']={'status': 'ERROR', 'reason':'ETA > 10m'}
else:
sc['eta']='[bold red]'
st['eta']={'status': 'CRITICAL', 'reason':'ETA > 2h'}
# Lag and rate
sc['rate']='[green]'
st['rate']='OK'
st['rate']={'status': 'OK', 'reason':''}
sc['lag']='[white]'
st['lag']={'status': 'OK', 'reason':''}
if lag>0 and rate['events_consumption_rate'] == 0: #events_consumption_rate: consumption rate per second
sc['rate']='[bold red]'
st['rate']={'status': 'ERROR', 'reason':'Lag detected but not event consumption'}
elif rate['events_arrival_rate'] > 5 * rate['events_consumption_rate']:
sc['rate']='[bold red]'
st['rate']={'status': 'ERROR', 'reason':'Arrival rate > 5 * consumption rate'}
elif rate['events_arrival_rate'] > 2 * rate['events_consumption_rate']:
sc['rate']='[bold yellow]'
st['rate']={'status': 'WARNING', 'reason':'Arrival rate > 2 * consumption rate'}
return st, sc
def lag_show_status(params):
a = params['a']
kd1 = calc_lag(a, params)
time.sleep(params['kafka_poll_period'])
kd2 = calc_lag(a, params)
rates = calc_rate(kd1, kd2)
#print(json.dumps(rates,indent=2))
gst={}
for g in rates:
for t in rates[g]:
if 'events_consumed' not in rates[g][t]:
continue
lag = kd2['group_lags'][g][t]['sum']
st, s = lag_health(g, lag, rates[g][t])
gst[f"{g}-{t}"]=st
print(json.dumps(gst,indent=2))
def show_summary_json(params):
a = params['a']
kd = calc_lag(a, params)
summary={}
for g in kd['group_lags']:
state = f"{kd['consumer_groups']['properties'][g]['state']}"
summary[g]={}
summary[g]['state']=state
summary[g]['topics']={}
for t in kd['group_lags'][g]:
parts_total = topic_nparts(params, t)
summary[g]['topics'][t]={
#"group": g,
"partitions": len(kd['group_lags'][g][t]['partlags'].keys()),
"lag_max": kd['group_lags'][g][t]['max'],
"lag_min": kd['group_lags'][g][t]['min']
}
print(json.dumps(summary,indent=2))
def lag_show_rich(params):
a = params['a']
kd = calc_lag(a, params)
if params['kafka_summary']:
table1 = Table(title="Initial Lag summary", show_lines=False)
table1.add_column("Consumer Group", justify="left", style="cyan", no_wrap=True)
table1.add_column("Topic", style="cyan")
table1.add_column("Partitions\n(with groups/total)", justify="right", style="green")
table1.add_column("Lag (part median)", justify="right", style="green")
table1.add_column("Consumer Group State", justify="left", style="green")
for g in kd['group_lags']:
for t in kd['group_lags'][g]:
state = kd['consumer_groups']['properties'][g]['state']
if state == ConsumerGroupState.EMPTY:
stc="[red]"
else:
stc="[green]"
topic_name = kd['group_lags'][g][t]['topic']
parts_with_consumers = str(len(kd['group_lags'][g][t]['partlags'].keys()))
parts_total = topic_nparts(params, topic_name)
table1.add_row(g, topic_name,
f"{parts_with_consumers}/{parts_total}",
str(kd['group_lags'][g][t]['median']),
f"{stc}{state}[/]"
)
console = Console()
console.print(table1)
print("")
if params['kafka_poll_iterations'] == 0:
sys.exit(0)
def generate_table(iiteration, kd, rates) -> Table:
dt = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
table = Table(title=f"Lags and Rates\n[bold cyan]Last poll: {dt}, poll period: {params['kafka_poll_period']}s, poll: \[{iteration}]",
show_lines=False,
box=box.SIMPLE_HEAD,
caption="Legend: [cyan]INFO[/] [bold green]OK[/] [bold yellow]WARN[/] [bold magenta]ERR[/] [bold red]CRIT[/]")
table.add_column("Group", justify="left", style="cyan", no_wrap=True)
table.add_column("Topic", style="cyan")
table.add_column("Partitions", style="cyan")
table.add_column("Since\n(sec)", justify="right", style="green")
table.add_column("Events\nConsumed", justify="right", style="green")
table.add_column("New topic\nevts/sec", justify="right", style="green")
table.add_column("Consumed\nevts/sec", justify="right", style="green")
table.add_column("Est. time\nto consume", justify="right", style="green")
table.add_column("Total Lag", justify="right", style="magenta")
for g in rates:
for t in rates[g]:
state = kd['consumer_groups']['properties'][g]['state']
if 'events_consumed' not in rates[g][t]:
continue
lag = kd2['group_lags'][g][t]['sum']
st, s = lag_health(g, lag, rates[g][t])
# Highlight entire row if a cell has issues
# More colors: https://rich.readthedocs.io/en/stable/appendix/colors.html#appendix-colors
if st['eta'] != 'OK':
row_style='on dark_red' #also: gray23 , reverse
else:
row_style=None
if params['kafka_only_issues']: # don't display ok rows
continue
if args.anonymize:
g1 = f"group {abs(hash(g)) % (10 ** 6):6}"
t1 = f"topic {abs(hash(t)) % (10 ** 6):6}"
else:
g1=g
t1=t
t = kd2['group_lags'][g][t]['topic']
table.add_row(g1, t1,
str(len(kd['group_lags'][g][t]['partlags'].keys())),
f"{rates[g][t]['time_delta']:.2f}",
f"{humanize.metric(rates[g][t]['events_consumed'])}",
f"{humanize.metric(rates[g][t]['events_arrival_rate'])}",
f"{s['rate']}{humanize.metric(rates[g][t]['events_consumption_rate'])}",
f"{s['eta']}{rates[g][t]['rem_hms']}",
f"{s['lag']}{humanize.metric(kd['group_lags'][g][t]['sum'])}",
style=row_style
)
#print(f"{g:45} consumed {rates[g]['events_consumed']:8} evts in {rates[g]['time_delta']:3.1f}s,"
return table
iteration=0
print("Please wait, calculating initial rates...")
kd1 = calc_lag(a, params)
#time.sleep(params['kafka_poll_period'])
time.sleep(3)
kd2 = calc_lag(a, params)
rates = calc_rate(kd1, kd2)
table = generate_table(iteration, kd2, rates)
#console.print(table)
live = Live(table, refresh_per_second=1)
with live: # Live only works in with..
while True:
kd2 = calc_lag(a, params)
rates = calc_rate(kd1, kd2)
kd1 = kd2
iteration += 1
time.sleep(params['kafka_poll_period'])
live.update(generate_table(iteration, kd2, rates))
if iteration==params['kafka_poll_iterations'] and params['kafka_poll_iterations']>0:
sys.exit(0)
def init_conf(args):
params={}
broker=args.kafka_broker
a = AdminClient({'bootstrap.servers': broker})
params['a'] = a
if args.kafka_group_exclude_pattern is not None and len(args.kafka_group_exclude_pattern):
params['kafka_group_exclude_pattern']=re.compile(args.kafka_group_exclude_pattern)
else:
params['kafka_group_exclude_pattern']=None
if args.kafka_group_filter_pattern is not None and len(args.kafka_group_filter_pattern):
params['kafka_group_filter_pattern']=re.compile(args.kafka_group_filter_pattern)
else:
params['kafka_group_filter_pattern']=None
params['kafka_poll_period'] = int(args.kafka_poll_period)
params['kafka_poll_iterations'] = int(args.kafka_poll_iterations)
params['kafka_summary'] = int(args.kafka_summary)
params['kafka_summary_json'] = int(args.kafka_summary_json)
params['kafka_show_empty_groups'] = int(args.kafka_show_empty_groups)
params['kafka_only_issues'] = int(args.kafka_only_issues)
return params
def signal_handler(signal, frame):
sys.exit(0)
# --info
def show_kafka_topicinfo(params):
info={
'topics':{},
'brokers':{},
'broker_name':'',
'cluster_id':'',
}
cinfo = list_topics(params)
for t in cinfo.topics:
tname=t
tparts=cinfo.topics[tname].partitions
pkeys = tparts.keys()
if args.kafka_topicinfo_parts:
partinfo=[]
for pk in pkeys:
partinfo.append({'id': tparts[pk].id, 'leader': tparts[pk].leader, 'replicas': tparts[pk].replicas, 'nisrs': len(tparts[pk].isrs)})
info['topics'][tname] = {'name':tname, 'partitions':len(pkeys), 'partinfo':partinfo}
else:
info['topics'][tname] = {'name':tname, 'partitions':len(pkeys)}
for b in cinfo.brokers:
bid=b
bhost=cinfo.brokers[bid].host
bport=cinfo.brokers[bid].port
info['brokers'][bid]={'id':bid, 'host':bhost, 'port':bport}
info['broker_name']=cinfo.orig_broker_name
info['cluster_id']=cinfo.cluster_id
print(json.dumps(info,indent=2))
topic2nparts={}
#populate and cahce topic2nparts
def topic_nparts(params, tname):
global topic2nparts
# populate cache for all topics
if len(topic2nparts) == 0:
cinfo = list_topics(params)
for t in cinfo.topics:
tparts=cinfo.topics[t].partitions
nparts=len(tparts)
topic2nparts[t]=nparts
nparts = topic2nparts[tname]
return nparts
if __name__ == '__main__':
argparser = argparse.ArgumentParser(description='Kafka consumer statistics', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
argparser.add_argument('--kafka-broker', dest='kafka_broker', help='Broker IP', required = False, default='localhost' )
argparser.add_argument('--text', dest='text', help='Only plain text, no rich output.', required = False, default=False, action='store_true' )
argparser.add_argument('--poll-period', dest='kafka_poll_period', help='Kafka offset poll period (seconds) for evts/sec calculation', required = False, default=5)
argparser.add_argument('--poll-iterations', dest='kafka_poll_iterations', help='How many times to query and display stats. -1 = Inf', required = False, default=15)
argparser.add_argument('--group-exclude-pattern', dest='kafka_group_exclude_pattern', help='If group matches regex, exclude ', required = False, default=None )# default='_[0-9]+$')
argparser.add_argument('--group-filter-pattern', dest='kafka_group_filter_pattern', help='Include *only* the groups which match regex', required = False, default=None)
argparser.add_argument('--status', dest='kafka_status', help='Report health status in json and exit.', required = False, action='store_true')
argparser.add_argument('--summary', dest='kafka_summary', help='Display consumer groups, states, topics, partitions, and lags summary.', default=False, required = False, action='store_true')
argparser.add_argument('--summary-json', dest='kafka_summary_json', help='Display consumer groups, states, topics, partitions, and lags summary, in json.', default=False, required = False, action='store_true')
argparser.add_argument('--topicinfo', dest='kafka_topicinfo', help='Only show informational data about the cluster, topics, partitions, no stats (fast).', default=False, required = False, action='store_true')
argparser.add_argument('--topicinfo-parts', dest='kafka_topicinfo_parts', help='Same as --info but also show data about partitions, isr, leaders.', default=False, required = False, action='store_true')
argparser.add_argument('--only-issues', dest='kafka_only_issues', help='Only show rows with issues.', default=False, required = False, action='store_true')
argparser.add_argument('--anonymize', dest='anonymize', help='Anonymize topics and groups.', default=False, required = False, action='store_true')
argparser.add_argument('--all', dest='kafka_show_empty_groups', help='Show groups with no members.', default=False, required = False, action='store_true')
argparser.add_argument('--version', action='version', version=f'%(prog)s {VERSION}')
args = argparser.parse_args()
params = init_conf(args)
signal.signal(signal.SIGINT, signal_handler)
if args.kafka_topicinfo or args.kafka_topicinfo_parts:
show_kafka_topicinfo(params)
sys.exit(0)
if args.kafka_status:
lag_show_status(params)
sys.exit(0)
if args.kafka_summary_json:
show_summary_json(params)
elif args.text:
lag_show_text(params)
else:
lag_show_rich(params)