forked from zxleong/GPRNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path17-field_Data_Loader.py
56 lines (39 loc) · 1.71 KB
/
17-field_Data_Loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
'''@author: Zi Xian Leong (zxleong@psu.edu) '''
import numpy as np
import matplotlib.pyplot as plt
from random import uniform as rand
import scipy.io as sio
import os
from sklearn.model_selection import train_test_split
from skimage.transform import rescale, resize
from sklearn.metrics import accuracy_score
from sklearn import preprocessing as pp
from numpy.matlib import repmat
# from skimage.metrics import structural_similarity as ssim
from matplotlib.ticker import FormatStrFormatter
from scipy.signal import savgol_filter
# from mpl_toolkits.mplot3d import Axes3D
from tqdm import tqdm
import scipy.stats
from scipy.signal import tukey
from DLcodes.GPRNet import GPRNet
'''Field Data Loader'''
#%% Load Training data
X_train_raw = np.load('Field/Data/ForDL/GPRData.npy')
y_train_raw = np.load('Field/Data/ForDL/Vel.npy')
#%% Prep data for GPRNet Training,
X_train_raw = pp.normalize(X_train_raw,norm='max',axis=1)
X_train_raw = np.expand_dims(X_train_raw, axis=2)
y_train_raw = y_train_raw/1e9
y_train_raw = np.expand_dims(y_train_raw, axis=2)
#%%
print("""# Spliting training and testing """)
X_train_main, X_test, y_train_main, y_True = train_test_split(X_train_raw, y_train_raw, test_size=0.01, random_state=155)
X_train, X_valid, y_train, y_valid = train_test_split(X_train_main, y_train_main, test_size=0.01, random_state=155)
#%% Save the training, testing, validation dataset for easier accessibilitiy
np.save('Field/Data/ForDL/field_X_train.npy',X_train)
np.save('Field/Data/ForDL/field_y_train.npy',y_train)
np.save('Field/Data/ForDL/field_y_valid.npy',y_valid)
np.save('Field/Data/ForDL/field_X_valid.npy',X_valid)
np.save('Field/Data/ForDL/field_X_test.npy',X_test)
np.save('Field/Data/ForDL/field_y_true.npy',y_True)